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Preface

This volume contains selected papers from CLA 2006, the 4th International
Conference on Concept Lattices and Their Applications. CLA 2006 was held in
Hammamet, Tunisia, from October 30 to November 1, 2006, and was organized
jointly by the El-Manar University (Computer Science Department, Faculty of
Sciences), Tunis, and the Université Centrale, Tunis. The main areas of interest
relevant to CLA include formal concept analysis (FCA), foundations of FCA,
mathematical structures related to FCA, relationship of FCA to other methods
of data analysis, visualization of data in FCA, and applications of FCA.

The conference received 41 submitted papers. This volume contains 18 papers
(13 long, 5 short) selected from the submitted papers which were accepted and
presented at the conference (selection rate 0.44). Contributions to CLA 2006
were refereed by at least three reviewers on the basis of their originality, quality,
significance, and presentation. When one of the Program Chairs was involved
in a paper, the reviewing process of this paper was managed independently
by the other chair. When both of the Program Chairs were co-authors, Radim
Belohlavek managed the reviewing process of those papers.

The program of CLA 2006 also included four invited talks by Rudolf Wille
(TU-Darmstadt, Germany), Claudio Carpineto (FUB, Rome, Italy), Peter
Eklund (University of Wollongong, Australia), Amedeo Napoli (LORIA, Nancy,
France), and a tutorial by Radim Belohlavek (Palacky University, Olomouc,
Czech Republic). Three papers based on the invited talks are a part of this
volume.

We would like to express our thanks to the authors who submitted their
papers to CLA 2006, to the invited speakers, to the members of Program Com-
mittee who managed the review of papers, to the additional reviewers, to the
members of the Organization Committee, as well as to the conference attendees,
who all helped make CLA 2006 a successful event.

November 2007 Sadok Ben Yahia
Engelbert Mephu Nguifo

Radim Belohlavek
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Václav Snášel VSB-TU Ostrava, Czech Republic

Program Chairs
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Václav Snášel VSB-TU Ostrava, Czech Republic
Henry Soldano LIPN, Paris 13, France
Petko Valtchev DIRO, Université de Montréal, Canada
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Samir Elloumi (Chair) Faculté des Sciences de Tunis, Tunisia
Khedija Arour INSAT, Tunis, Tunisia
Olivier Couturier CRIL CNRS FRE 2499 - IUT de Lens, France
Helmi El Kamel Université Centrale, Tunis, Tunisia
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Université El-Manar, Tunis
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An Intelligent User Interface for Browsing and
Searching MPEG-7 Images Using Concept Lattices

Jon Ducrou, Peter Eklund, and Tim Wilson

School of Information Systems and Technology
University of Wollongong

NorthFields Avenue, New South Wales, Australia
{jond,peklund}@uow.edu.au, timwilson1@optusnet.com.au

Abstract. This paper presents the evaluation of a design and architecture for
browsing and searching MPEG-7 images. Our approach is novel in that it exploits
concept lattices for the representation and navigation of image content. Several
concept lattices provide the foundation for the system (called IMAGE-SLEUTH)
each representing a different search context, one for image shape, another for
color and luminance, and a third for semantic content. This division of informa-
tion aids in the facilitation of image browsing based on a metadata ontology. The
test collection used for our study is a sub-set of MPEG-7 images created from the
popular The Sims 2TM game. The evaluation of the IMAGE-SLEUTH program is
based on usability testing among 29 subjects. The results of the study are used to
build an improved second generation program – IMAGE-SLEUTH2– but in them-
selves indicate that image navigation via a concept lattice is a highly successful
interface paradigm. Our results provide general insights for interface design using
concept lattices that will be of interest to any applied research and development
using concept lattices.

1 Introduction

The objective of this research is to offer a novel way of searching and navigating digital
images – images annotated with MPEG-7 multimedia descriptors – and presenting them
in a way that is easily understood by humans. The interface we develop presents a new
way to graphically represent relationships between images so that navigation across a
collection of images occurs in a non-linear or serendipitous way. A suitable method for
achieving this is by the application of formal concept analysis. The images (as objects)
are organised as a conceptual hierarchy via the formal concept analysis of their image
and metadata attributes. The concept lattice that results provides the information space
over which the interface navigates. The paper tests the success of this idea through
software evaluation in a usability trial.

The images used to test the approach are derived from the popular computer game
The Sims 2TM. This collection is made interesting by taking into account the properties
given to these objects in The Sims 2TM game play. The game playing properties are ele-
ments such as: how an object addresses The Sims 2TM character’s needs — like hunger,
bladder comfort, tiredness, hygiene, etc; how the object develops The Sims 2TM charac-
ter’s skills in different skill areas – e.g. logic, cooking, mechanical skills and creativity.

S. Ben Yahia et al. (Eds.): CLA 2006, LNAI 4923, pp. 1–21, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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In addition to this metadata associated with the game play, MPEG-7 feature descriptors
are also used so that the images can be navigated according to their color and shape.

In related work [1] we address the issue of the design theory underlying a Web-based
FCA system for browsing and searching MPEG-7 images called IMAGE-SLEUTH. This
paper, which emphasises the usability of IMAGE-SLEUTH, is structured as follows. In
order to be self-contained, an introduction to formal concept analysis is provided in
Section 1. Because the image format we use contains semantic attributes as well as an
image signature we give the reader a brief introduction to MPEG-7 in Section 2. We
illustrate the idea of image browsing using FCA with a collection of images from the
The Sims 2TM and in Section 3 we present both a synopsis of the The Sims 2TM game
play and details of the MPEG-7 image content. In Section 4 we present our approach
to image navigation based on the design of edge traversal in the concept lattice. Our
main results are presented in Section 5 where we present the usability test script, the
survey instrument and the results of our evaluation for the image browsing software.
An important purpose to our usability study was to learn how to improve the perfor-
mance and design of our software. In Section 6 we show how our findings conditioned
the development of IMAGE-SLEUTH2, in particular the way that conceptual scaling is
handled and the introduction to IMAGE-SLEUTH2 of distance and similarity metrics for
approximate matching. In Section 7 we discuss work in progress on extending our ideas
to searching and browsing a dynamic data collection: namely the Amazon catalog.

Formal Concept Analysis Background

Formal Concept Analysis [2] has a long history as a technique of data analysis ([3], [4])
conforming to the idea of Conceptual Knowledge Processing. Data is organized as a
table and is modeled mathematically as a many-valued context, (G, M, W, Iw) where
G is a set of objects, M is a set of attributes, W is a set of attribute values and Iw is a
relation between G, M , and W such that if (g, m, w1) ∈ Iw and (g, m, w2) ∈ Iw then
w1 = w2. In the table there is one row for each object, one column for each attribute,
and each cell is either empty or asserts an attribute value.

A refined organization over the data is achieved via conceptual scales. A conceptual
scale maps attribute values to new attributes and is represented by a mathematical entity
called a formal context. A formal context is a triple (G, M, I) where G is a set of
objects, M is a set of attributes, and I is a binary relation between the objects and the
attributes, i.e. I ⊆ G × M . A conceptual scale is defined for a particular attribute of
the many-valued context: if Sm = (Gm, Mm, Im) is a conceptual scale of m ∈ M
then we define Wm = {w ∈ W |∃(g, m, w) ∈ Iw} and require that Wm ⊆ Gm. The
conceptual scale can be used to produce a summary of data in the many-valued context
as a derived context. The context derived by Sm = (Gm, Mm, Im) w.r.t plain scaling
from data stored in the many-valued context (G, M, W, Iw) is the context (G, Mm, Jm)
where for g ∈ G and n ∈ Mm

gJmn ⇔: ∃w ∈ W : (g, m, w) ∈ Iw

and (w, n) ∈ Im

Scales for two or more attributes can be combined in a derived context. Consider a set
of scales, Sm, where each m ∈ M gives rise to a different scale. The new attributes
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supplied by each scale can be combined:

N :=
⋃

m∈M

Mm × {m}

Then the formal context derived from combining these scales is:

gJ(m, n) ⇔: ∃w ∈ W : (g, m, w) ∈ Iw

and (w, n) ∈ Im

Several general purpose scales exist such as ordinal and nominal scales. A nominal
scale defines one formal attribute for each value that a many valued attribute can take.
An ordinal scale can be used to interpret an attribute whose values admit a natural
ordering, for example the ≤ ordering over numbers.

A concept of a formal context (G, M, I) is a pair (A, B) where A ⊆ G, B ⊆ M ,
A = {g ∈ G | ∀m ∈ B : (g, m) ∈ I} and B = {m ∈ M | ∀g ∈ A : (g, m) ∈ I}. For
a concept (A, B), A is called the extent and is the set of all objects that have all of the
attributes in B, similarly, B is called the intent and is the set of all attributes possessed in
common by all the objects in A. As the number of attributes in B increases, the concept
becomes more specific, i.e. a specialization ordering is defined over the concepts of a
formal context by:

(A1, B1) ≤ (A2, B2) :⇔ B2 ⊆ B1

In this representation more specific concepts have larger intents and are considered
“less than” (<) concepts with smaller intents. The analog is achieved by considering
extents, in which case, more specific concepts have smaller extents. The partial ordering
over concepts is always a complete lattice [2].

For a given concept C = (A, B) and its set of lower covers (A1, B1)...(An, Bn) with
respect to the above < ordering the object contingent of C is defined as A −

⋃n
i=1 Ai.

We shall refer to the object contingent simply as the contingent in this paper.

2 MPEG-7 Images

Accepted as an ISO standard in 2001, MPEG-71 allows the storage of physical and
semantic descriptors for use in content management, organization, navigation, and au-
tomated processing of images [5]. MPEG-7 is extensible, being based on XML, and can
therefore support a broad range of applications.

MPEG-7 comprises Description Tools made up of the metadata elements, along with
their structure and relationships, which are used to form Descriptors and Description
Schemas. Descriptions can then be used by applications for effective and efficient ac-
cess to multimedia content. These descriptions accommodate a range of abstraction
levels, from low-level signal characteristics to high-level semantic information. In this
paper, we are interested in both low-level image descriptors, more specifically color de-
scriptors and shape descriptors, as well as high-level semantic metadata by extending
the MPEG-7 format to store customised details for each object.

1 http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm
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Color descriptors in MPEG-7 consist of seven more specific descriptors: Color
space, Color Quantization, Dominant Colors, Scalable Color, Color Layout,
Color-Structure, and GoF/GoP Color. Three of the MPEG-7 visual descriptors are
used in this research, these are color Layout, Scalable color and Edge Histogram
and these are extracted from the image collection as described below.

3 Feature Extraction on the Example Collection

The example collection for our Web-based image browser is based on items from the
popular computer game The Sims 2TM. Created by Electronic Arts, The Sims 2TM is
“the sequel to the best-selling PC game of all time”2. In brief, the game is a real-life
simulation; the player is given control over a suburban neighborhood and the people in
it, shaping their careers, friendships, houses, children, and controlling mundane tasks:
such as directing them to cook meals, have showers and go to bed. These simulations of
the people who populate the neighborhood — the characters of the game — are referred
to as Sims.

Each Sim has 8 needs that affect their well-being. These are hunger, comfort, hy-
giene, bladder, energy, fun, environment and social. Sims also have 7 types of skills
which they can practice and refine. These skills are cleaning, charisma, creativity, body,
logic, mechanical and cooking. As well as looking after their needs and lives, a player
can build a house for their Sim and purchase different household items to furnish it.
These items include furniture, plumbing, appliances, decorations, electronics, plants,
lighting and much more. Household items can directly affect a Sim’s needs and skills
when in use3. Hunger, for example, is satisfied to a lesser degree when cooking with
a cheap microwave than using an expensive oven. Some of the items can also have
a negative impact on a Sim. For example, a coffee machine increases energy, but de-
creases bladder comfort. A bookcase will allow the Sim to study and increase cooking
skills, while an artist’s easel will allow the Sim to produce artworks and increase their
creativity.

3.1 The Sims 2TM Image Collection

Our collection is based on virtual household items that can be bought and sold in the
The Sims 2TM. The basis for this choice is the dual nature of the items. A household
item must aid in successful game playing – as well as have aesthetic appeal – perhaps
matching other furnishings already in place. Therefore, a household item has physical
properties such as color and shape, as well as properties that effect a Sim’s life and
well-being .

The color layout descriptor in MPEG-7 breaks the image into an 8 × 8 grid and
represents each grid square by the dominant color in YCbCr format4. The scalable
color descriptor gives a measure of color distribution over the entire image. The edge

2 http://thesims2.ea.com/
3 The exception here is the “social” dimension which is only affected by social interactions.
4 YCbCr is a family of color spaces used in video systems and similar to that used in color

television.
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<VisualDescriptor xsi:type="ColorLayoutType">
<YDCCoeff>5</YDCCoeff>
<CbDCCoeff>30</CbDCCoeff>
<CrDCCoeff>31</CrDCCoeff>
<YACCoeff63>

13 23 15 12 5 20 9 14 19 17 16 17 21 18 15 17 18 12 16 11 13
16 14 15 15 15 17 13 16 15 17 14 20 15 17 16 18 15 16 15 15 12
14 15 16 15 16 14 16 15 16 16 17 16 15 15 14 15 15 15 16 17 16

</YACCoeff63>
<CbACCoeff63>

16 15 16 16 17 15 16 16 15 15 16 15 15 15 16 15 15 16 15 16 16
16 16 16 16 16 15 16 16 16 15 16 15 16 15 16 15 16 16 16 16 16
16 16 15 16 16 16 16 16 15 16 15 15 16 16 16 16 16 16 16 15 15

</CbACCoeff63>
<CrACCoeff63>

16 16 16 16 16 16 15 15 16 16 15 16 16 16 15 15 16 16 16 15 15
16 15 16 15 15 15 16 16 16 16 16 16 15 16 16 16 15 16 16 16 16
15 15 16 16 16 15 16 15 16 16 16 16 15 15 16 16 16 16 16 16 16

</CrACCoeff63>
</VisualDescriptor>

Fig. 1. An example of the color Layout extracted values for an image

<VisualDescriptor
xsi:type="ScalableColorType"
numOfBitplanesDiscarded="0"
numOfCoeff="64" >
<Coeff>

-202 58 40 41 -7 12 20 14 6 13 11 22 1 16 21 9
0 1 0 2 -1 5 0 0 -9 -2 -2 9 -15 3 -1 -19
0 0 0 1 0 0 1 2 1 1 1 3 1 2 4 5
1 -3 2 -2 2 -1 -8 -2 0 -15 0 -4 1 -2 -3 -15

</Coeff>
</VisualDescriptor>

Fig. 2. Scalable color Type extracted values

histogram defines a 4 × 4 grid and gives the strength of the non-homogeneous texture
for each grid square in 4 directions and an overall strength.

To extract shape and color information for a household item, a feature extraction
tool, Caliph [7], is used to generate color layout [8] and edge descriptors [9]. These
are then stored in MPEG-7 using the appropriate tags as shown in Figs. 1 and 2. A
secondary feature extraction process, which analyses the resulting descriptors, is then
run to produce more user-friendly color descriptors. The secondary color descriptors use
a reduced form of the standard HTML color set to assign a meaningful color property.
The set of color names have a hierarchy in which parent colors are more general (e.g.
Red → Dark Red → Maroon). These secondary descriptors are added into the MPEG-7
datastore using a custom mark-up.

The edge histogram descriptor is a measure of the edge distribution within an im-
age [10]. In a similar method to that used by the color layout descriptor, an image is
broken down into a series of non-overlapping square blocks. An edge histogram is then
generated on each of these blocks. The descriptor defines 5 values to represent the edge
histogram for each block. These 5 values describe the vertical, horizontal, 45 degree
and 135 degree edges as well as a non-directional edge. A nondirectional edge is one
that has no apparent direction (e.g. a curve).
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Fig. 3. The 5 edge types used in the edge histogram descriptor

Table 1. A fragment from the ‘Item Properties’ sub-context
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4 by 4 Designer Chandelier §120 0 0 0 0 0 0 1 Lighting Dining, Living, Bathroom, Bedroom
Absolutely Nothing Special §850 0 0 0 0 0 0 1 Lighting Kids, Study, Dining, Living, Bedroom
Ad-a-Quaint Barstool §285 0 3 0 0 0 0 1 Comfort Living, Kitchen
Ad-a-Quaint Coffee Table §140 0 0 0 0 0 0 1 Surfaces Study, Living
Astrowonder Telescope §550 0 0 0 0 0 4 0 Logic Hobbies Outside
Zenu Meditation Sleeper §950 0 4 0 0 4 0 2 Comfort Bedroom

The color and shape descriptors are then complemented with the various semantic
metadata derived from the The Sims 2TM game information. Needs and skills are an
attribute hierarchy where more specific attributes in the hierarchy imply more general.
For example, Needs is implied by Fun, Fun is implied by Fun:1 to 5. This gives
some level of encapsulation to the attributes because in order to have Fun appear as
an attribute, Needs must have also been included. Other item properties such as object
price and function and suitability to a given room type are also included. On function,
objects are grouped by the game into one of 11 functional categories: electronics, light-
ing, miscellaneous, comfort, aspiration rewards, career rewards, decorative, plumbing,
hobbies, appliances and surfaces. Items are also given a room property based on which
room the item would most likely be placed. An item may have one or more values for
the room property, meaning that it is suitable in several different rooms, or it may have
no room value at all, meaning that it can be put anywhere. The room types are: kids,
study, dining room, outside, living room, bathroom, bedroom and kitchen. An fragment
of the underlying formal context based on The Sims 2TM household objects is shown in
Table 1.

3.2 Basis for Selection of The Sims 2TM Dataset

In games such as The Sims 2TM, where collectible items affect gameplay, much effort is
put into the game’s design in terms of the balance and distribution of items with respect
to item properties. This design principle provides an excellent base for testing ideas that
use query-by-example, as for most items there is only a single exact item, and varying
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cluster types associated with it. For example, there may be only 1 curved, 3-seater, blue
couch with Comfort:8, but there is a collection of other blue couches with different
comfort levels, a collection of different colored and shaped couches with Comfort:8,
and a matching blue coffee table that associates with the couch. These are all acceptable
responses to query-by-example for the 3-seater, blue couch with Comfort:8 because in
some way they are all household objects of the same grouping: collected based on
different facets of the data.

4 Conceptual Design of the Image Browser

4.1 Problem Decomposition

Our approach decomposes the overall lattice – generated from the formal context frag-
ment, a fragment of which is shown in Table 1 – into smaller sub-lattices. These sub-
lattices are created by combining attributes compatable meaning. In the case of The Sims
2TM data, 3 sub-lattices are evident; color properties (including all attributes regarding
the colors used in the MPEG-7 images), Item properties (including all the game play
properties) and edge properties (including a human readable form of the MPEG-7’s
generated EdgeHistogramType classifier). Decomposing the lattice into sub-lattices
in this way allows for more overall generality per concept for each concept of each sub-
lattice. This is necessary given the unique nature of computer game items used in our
image collection, but also allows search via query-by-example.

4.2 Interface Design

At any one time the user will be placed at either a single formal concept of a sub-lattice
or at a single object (an image). The formal concept is displayed as a neighbourhood
showing the current extent as thumbnailed images (in arbitrary order), and the attributes
which allow movement to other formal concepts in the neighbourhood. Movement from
the current formal concept or image object can be via either specialisation or general-
isation. Specialisation is achieved by adding attributes and moving down in the lat-
tice structure (via an interface control called include). Alternatively, generalization is
achieved by removing attributes via an upward movement between formal concepts
(via an interface control called called remove). For include, the attributes that can be
added are displayed, and for remove, the attributes that can be removed are displayed
(see Fig. 4 (left)).

Our design philosophy is that the presentation of attributes belonging to the upper
and lower neighbour formal concepts allows the current state of the interface to move
across the concept lattice in an intuitive way. Further, that this approach to navigation is
often preferred to showing a complete list of possible attributes to add, or all attributes
that can be removed from the current view. One of the consequences of this design is
that it is impossible to navigate to a concept with an empty extent (i.e. no images),
because two mutually exclusive attributes can never be selected during navigation via
upper and lower concepts in the way described5. By using the concept lattice structure

5 Also, the bottom-most concept is considered inaccessible and the user cannot navigate to it
(unless it has an extent size greater than zero).
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Fig. 4. An example screenshot of Image Sleuth and the lattice representation of the corresponding
neighbourhood

as the focus for navigation in the interface, the users’ perspective is concentrated on
conceptual changes that are minimal and incremental. Furthermore, navigation actions
in the interface conform directly to the definition of edge traversal in a concept lattice
and movment through the information space is therefore directly expressed in the theory
of Formal Concept Analysis.

This form of navigation helps to reduced the complexity per ‘decision’ point, as at-
tributes will often be hidden by others because of implications or attribute hierarchies,
whether data-emergent or artificial. For example, given the data has an attribute hier-
archy over colors, with more specific color descriptions being children of more gen-
eral terms, the attributes ‘Dark Blue’ and ‘Light Blue’ will not be visible as include
attributes until the user has included the ‘Blue’ attribute. Conversely, if the ‘Dark Blue’
attribute is visible as a remove attribute, ‘Blue’ will be hidden. Complexity is also re-
duced by attribute equivalence. For example, if ‘Dark Green’ is the only type of green in
the data it will appear in the include attributes as a combined pair of attributes ‘Green,
Dark Green’ as there is equivalence between them, (i.e. images with ‘Dark Green’ will
also be ‘Green’).

As well as navigation via traversal of the concept lattice the IMAGE-SLEUTH inter-
face also provides a traditional query interface that allows direct positioning into the
concept lattice. The query interface restricts the user to terms that are attributes of the
current sub-lattice. The query interface takes the submitted attributes and finds the most
specific concept that has all query terms, namely the query interface performs the equiv-
alent of the double prime operation in FCA. This method ensures that at all times the
user is positioned at a formal concept. In the event that the user selects attributes for
which no formal concept exists, no images are returned.

IMAGE-SLEUTH also supports the direct selection of an image of interest by click-
ing on it. In this case the user is presented with the exact set of attributes for the given
image and the option of changing sub-lattice or querying-by-example. Any single ob-
ject can act as a connection point between contexts, and by changing contexts the user
is presented with the attributes this object has within the new sub-lattice. Query-by-
example uses the current images’ attributes to relocate to the most specific concept as-
sociated with the image. This will then show all other objects with the same attributes.
This means that an object can be found using one sub-lattice, then be used in another
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Fig. 5. A navigation overview of the system

Fig. 6. A technical overview of the system

sub-lattice to find similar objects, but within a different area of interest. For example,
using The Sims 2 collection, a user may find a bed that suits their in-game requirements,
then swap sub-lattices to find matching furniture for that bed using color or shape in-
formation. The architecture for the IMAGE-SLEUTH system in shown in Fig. 6.
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5 Usability

Rozanaski and Haake define several attributes of usability with regards to a user in-
terface [11]: (i) learnability; (ii) efficiency; (iii) memorability; (iv) amount of error;
(v) satisfaction. This usability evaluation attempts to measure the success of IMAGE-
SLEUTH in meeting these attributes. Usability will be measured through an empirical
study that consists of two parts, a test script and a participant survey. The results are
also compared with interaction logs which independendly validate that the participant
achieved the correct state.

To perform the study, postgraduate and honours students were recruited to partici-
pate in the usability tests. Each of the 29 testers were based in one of 6 Faculties at
the University of Wollongong in Australia. The students were primarily drawn from
Informatics (49%) and Commerce (32%) Faculties, with others from Law, Education,
Engineering and Arts. All could be said to exhibit a high degree of computer literacy.

5.1 Test Script

The test script consists of three sections the first two of which returned quantitative
results and the third qualitative results. The first section included directions to be fol-
lowed using Windows Explorer to browse the image collection. Images can be viewed
as thumbnails within a folder, and sorted by various criteria such as file name and cre-
ation date. Tasks included finding particular items, finding items that matched certain
criteria, observations of item groups with certain features and so on. Some tasks in this
section – while possible to complete – may have proven time-consuming or difficult to
accomplish using Windows Explorer. Windows Explorer is not designed as an image
browser, but it can be used to browse images and is used as the base level functionality
because all participants are familiar with it. If IMAGE-SLEUTH proved no better than
Windows Explorer then this would be a powerful argument to abandon the design.

The second section of the test started with identical tasks to those in the first but
now completed using IMAGE-SLEUTH. As the study supervisors were not permitted
to assist participants, the steps to be followed using IMAGE-SLEUTH were ordered in
such a way as to expose participants to the various functionality of IMAGE-SLEUTH

gradually. Designing the test script in this way assists the participant in learning the new
navigation style without needing special training. Tasks in the latter half of the second
section of the test script were designed to make participants perform more complex
interactions in order to solve problems. For example, showing a black and white image
of an object in a setting at a different orientation and asking participants to identify its
color by finding the corresponding image in IMAGE-SLEUTH. These tasks extended the
test script and had no comparable task in the first section of the script. A complete list
of the second sections tasks are shown below.

The first and second sections were issued in reverse order to half of the participants.
This way, familiarity with the object set did not give an unfair advantage to IMAGE-
SLEUTH.

1. Identify how many images have the environment attribute.
2. Identify how many images have a price higher than 5000.
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3. Search for all images that are Decorative. Then include the outside room type. How
many images are there?

4. Identify how many images can be used in both the Dining Room and Kitchen.
5. Identify how many of the plumbing images also have an environment attribute.

What types of objects are these?
6. How many images do not have a price at all?
7. Identify how many images are green using the color properties.
8. There are 2 beds with a high level of horizontal edges. Which are they?
9. Are there more red, navy or green images?

10. Find the name of the chair in the following image:

Shown in color.

11. Find the name of the bed in the following image: (Note - The bedspread need not
be the same)

Shown in color.

12. Find the name of the bath/shower in the following image. What color is the curtain
around it?

Shown in black and white.
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13. This object is not in The Sims 2TM collection.

Shown in color.

It has attributes of: Comfort = 5, Energy = 4, Environment = 3.
Find one image that is similar in design and one that has similar attributes while
not being expensive.

14. Find the object that can be used outside, builds logic and has a price between 1000
to 5000. How many images have similar colors?

15. Aspiration rewards and career rewards are special objects in The Sims 2TM. Using
IMAGE-SLEUTH to browse the objects, what can you say about them, in 50 words
or less?

The final section of the test script consisted of a “free exploration” of IMAGE-
SLEUTH: encouraging participants to discover features without any particular goal in
mind. This allowed participants to gain an understanding of the features without explicit
direction. Participants were subsequently asked to provide their positive and negative
thoughts regarding the features of the program.

5.2 Survey

The survey asked participants questions on their personal background and experience
with IMAGE-SLEUTH. Background information included the faculty of study, experi-
ence with other image browsers/viewers and the methods of organisation used for per-
sonal image collections. Likert scales were used collect details of their experience with
IMAGE-SLEUTH and Windows Explorer. This was followed by a series of questions
to assess the participants understanding of IMAGE-SLEUTH and how it worked. Fig. 7
shows a complete list of questions asked in the survey.

5.3 Interpreting the Usability Results

The second section of the test script (where users are first exposed to IMAGE-SLEUTH)
proved difficult for participants, but after completion of first few questions, most sub-
jects became acquainted with the user interface and its functionality. On average, once
participants had attempted 6 – 7 tasks the number of correct responses increased con-
siderably, even though the tasks became progessively more difficult.

Average correct completion for the Explorer tasks was 70.5%, and 74.5% for the
equivalent IMAGE-SLEUTH tasks. The correct completion rate for the entire IMAGE-
SLEUTH test script was 73.4%.
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Participant Survey

– Short Response
• Which faculty does your university degree belong?
• Are you color blind? If so, did you experience difficulty in completing the test script?
• Have you used image management applications before? If so, which?
• Do you already sort your images based on specific criteria (e.g. date, location, etc.)? If

so, what?

– Likert Scale Statements (0 to 10, disagree to agree)
• I am familiar with the PC Game The Sims 2TM.
• I found it easy to complete tasks with:

∗ Windows Explorer
∗ IMAGE-SLEUTH

• I feel that IMAGE-SLEUTH has a strong advantage over Windows Explorer.
• I feel that IMAGE-SLEUTH has a strong advantage over other image browsers.
• IMAGE-SLEUTH allows me to recognise relationships between images that I may not

have noticed previously.
• IMAGE-SLEUTH is a tool that gives more power over searching and browsing catalogs

of images.
• I found that the properties were accurate.

∗ color
∗ Edge

• My overall experience with IMAGE-SLEUTH was a positive one.

– Multiple Choice

• What features of IMAGE-SLEUTH did you find assisted most when completing the tasks
in the test script? (circle all that apply)

• What features of IMAGE-SLEUTH made it difficult to complete the tasks in the test
script? (circle all that apply)

– Long Response
• Which features of IMAGE-SLEUTH could be used to improve the image browsing ex-

perience in the future, and why?
• In your own words, describe the 4 main components of the IMAGE-SLEUTH interface

and what they do. Name the 3 different types of searches and what they do?
• Do you understand what the Remove(up) and Include(Down) sections mean in IMAGE-

SLEUTH?
• In your own words, please describe what the Include and Remove sections allowed you

to do, and comment on whether or not this tool helped you to complete the allocated
tasks in the test script.

• Could you see this application being used in the real world? If so, where?
• Do you have any other comments?

Fig. 7. Complete list of questions on the survey

Of the respondents, 24 had previously used image management programs. Of these,
17 stated that they sorted their images based on specific criteria and over half the testers
had some familiarity with The Sims 2TM. Not surprisingly, all but 3 testers found that
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they could complete the test script easier with IMAGE-SLEUTH than with Windows
Explorer and 23 testers stated that they felt more comfortable using IMAGE-SLEUTH.
All testers believe that IMAGE-SLEUTH was better than Windows Explorer for browsing
images and all but 2 testers thought that IMAGE-SLEUTH had advantages over photo
browsing applications they had encountered.

Question 6 asked participants to rank the ease of task completion for both Windows
Explorer and IMAGE-SLEUTH. It can be seen in Fig. 8 that most subjects found IMAGE-
SLEUTH easier to use. On a scale to 10, the average for IMAGE-SLEUTH is 7.3, while
Windows Explorer’s average is 3.7; almost half that of IMAGE-SLEUTH.

Fig. 8. Comparison of the ease of task completion between Windows Explorer and IMAGE-
SLEUTH

Question 12 asked “What features of IMAGE-SLEUTH did you find assisted most
when completing the tasks in the test script? (circle all that apply)”. Results (shown in
Fig. 9) indicated that the ‘include/remove’ and attribute search controls were found to
be most useful.

Many participants were unhappy with the IMAGE-SLEUTH interface, claiming it ap-
peared primitive and difficult to navigate with the search functions at the bottom of the
page (See Fig.10). Another frequently mentioned negative was the accuracy of the color
property. Participants did not seem to agree with some of the colors that were returned
by IMAGE-SLEUTH for some images and suggested the inclusion of a color palette (or
legend) so that testers could identify by label the color they were searching for.

Of the positive comments, the most common involved the include and remove con-
trols, the ability to find specific images quickly and the consistency in design. Testers
found it extremely useful to be able to remove single attributes rather than having to
perform new searches from scratch.
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Fig. 9. The most useful features of IMAGE-SLEUTH

Participants for the most part understood the navigation paradigm very well, some
even using the terms ‘narrow” and “move down” to describe the include control and
“broaden” and “move up a level” to describe the remove control. Other testers felt that
the remove was more like the ‘Back’ button in a Web browser that allowed you to
navigate back in multiple ways, for instance, “...allowed me to reverse a search term
without having to go back and redo the search again” and “... similar to the function of
back in Internet Explorer. The difference is you can choose which step you have before
(sic) easily”.

Review of interaction logs found that the most common pattern for participants
was to start each task with a term search in the appropriate sub-lattice (color, shape
or game play) and then navigate from this concept using the include/remove controls.
This method was appropriate but showed an inherent flaw in the term search approach.
When attributes are used in a term search and there is no object with all the attributes
IMAGE-SLEUTH returns the empty-extent concept. This appeared to leave participants
confused, and many reported that the task was unsolvable and moved on to the next
task. It is an observation that argues for some form of approximate matching when the
result set is empty (discussed below in Section 6).

5.4 Usability Conclusions

The ‘include/remove’ controls for navigation was very successful, further ‘term search-
ing’ was liked by participants but sometimes caused empty results which led to con-
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Fig. 10. Features difficult to use in IMAGE-SLEUTH

fusion. Testers responded well to the idea that images were ‘grouped’ at all times,
the groupings being concept extents. Many participants commented on the ease-of-use
of IMAGE-SLEUTH, or the fact they had understand the functionality of the software
quickly. Most understood or had an idea about how each interaction affected the state
of their navigation. This indicates that the navigation paradigm is intuitive.

6 Applying Usability Results

After the analysis of the usability results work on a second version of IMAGE-SLEUTH

began. The aims of the second version were to address the problems and issues revealed
in the usability testing.

A significant change is to allow overlapping sub-contexts, to combine attributes from
color, shape and game play in a more fluid way, so that a more dynamic notion of the
sub-lattices that could be created and navigated emerges. In the first version, there were
three exclusive contexts concentrating on different facets of the information space. This
was changed to one context, with a set of ’perspectives’ (conceptual scales) over the
formal context. These perspectives can then be used singularly or in combination, and
added/removed as necessary during use of the system. This reduces the restrictive nature
that separate sub-contexts caused and allows users to see all attributes pertinent to their
navigation needs. The original contexts were “Item Properties”, “Color Properties” and
“Edge Properties”, but IMAGE-SLEUTH2 6 has 10 perspectives;

6 IMAGE-SLEUTH2 can be trialed by visiting http://130.130.112.18/jon/test/framebuilder.exe
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– Simplecolors (16 color set.)
– Advancedcolors (216 color set + Simplecolors. Equivalent to “color Properties”)
– Needs
– Skills
– Price
– Function
– RoomType
– NeedsAndSkills (combination of Needs and Skills.)
– Gameplay (all game play related attributes. Equivalent to “Item Properties”.)
– SimpleGameplay (same as GamePlay, excluding the lowest level of detail.)

This use of a library of concept scales (as perspectives or view over the image col-
lection) means sub-contexts, and concept lattices derived from them, can be drawn
from any combination of the scales (e.g. Advancedcolors and SimpleGameplay).
A screenshot showing IMAGE-SLEUTH2 is shown in Fig. 11.

Fig. 11. An example screenshot of IMAGE-SLEUTH2 showing the neighbourhood of the formal
concept represented by the images with exactly the attributes Hobbies and Roomtype=study.
The scales (or perspectives) that condition for lattice are Function and Roomtype.

The IMAGE-SLEUTH interface received criticism from participants, primarily focus-
ing on poor organisation. To address this IMAGE-SLEUTH2, while still browser-based,
has fixed positions for each interface component.

One method for dealing with the return of empty-extents from term search is to
provide users with a list of the terms entered so that they can be incrementally removed
terms to remove search constraints. Another method is to apply a vector space model of
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Fig. 12. An example of lattice traversal starting from a semi-concept. The traversal in this example
is complete in 3 steps. The shaded area shows the computed concepts at each step.

MPEG-7 images [12] and then apply similarity measures for multi-dimensional feature
spaces. IMAGE-SLEUTH2 explores a different approach by using variations on defined
distance [13] and similarity [14] metrics in the FCA literature in order to find relevant
concepts.

The similarity metric we applied uses the size of the common objects and attributes
of the concepts. For two concepts (A, B) and (C, D):

similarity((A, B), (C, D)) :=
1
2

(
|A ∩ C|
|A ∪ C| +

|B ∩ D|
|B ∪ D|

)
.

The distance metric uses the size of the total overlap of the intent and extent nor-
malised against the total size of the context. For two concepts (A, B) and (C, D):

distance((A, B), (C, D)) :=
1
2

(
|A \ C| + |C \ A|

|G| +
|B \ D| + |D \ B|

|M |

)
.

When a search contains attributes which are not manifest in a single object, IMAGE-
SLEUTH2 creates a semi-concept with the searched terms as the intent. This semi-
concept is used to prime a traversal of the lattice structure – the traversal applies the
distance and similarity metrics to calculate a relevance score. The traversal is bounded
by a maximum distance (see Fig. 12). The user is shown the most relevant concepts
(with objects as thumbnails) allowing users to decide the concept that best matches
their search. This relevance ranking this traversal method is accessible from any con-
cept to find closely matching concepts. A screenshot of results is shown in Fig. 13. This
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Fig. 13. Results of a concept traversal from the query “Appliances, Electronics, Study” using the
perspectives “Function, RoomType”. Appliances and Electronics are mutually exclusive.

provides a powerful tool for finding similar concepts and objects from a given starting
concept.

7 Future Directions

IMAGE-SLEUTH2 is currently being extended to utilise DVD information collected
from Amazon’s Web store. This allows a DVD to be represented by the front cover
of its case, and attributes to be created from the accompanying details (e.g. genre, actor,
director, etc). Performing a relevance queries on a DVD allows users to find closely
related DVD’s based on whichever facets of the data considered important. The archi-
tecture of that tool, called DVDSLEUTH, is different from IMAGE-SLEUTH2 because
the context is dynamic and grows in various ways depending on the directions taken in
the navigation in the Amazon catalog.
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8 Conclusion

The design theory underlying a Web-based FCA system for browsing and searching
MPEG-7 images was introduced in Ducrou et al. [1]. This paper has presented the
evaluation of an architecture and implementation of a browsing and search interface
for MPEG-7 images that exploits concept lattices for the representation and naviga-
tion of image collections. Sub-contexts provide the foundation for the IMAGE-SLEUTH

system, each representing a different search view: one for image shape, another for
color and luminance, and a third for semantic content. In this way the initial IMAGE-
SLEUTH would navigate over three concept lattices. In the subsequent versions of
IMAGE-SLEUTH, a library of conceptual scales (called perpectives) are introduced to
allow the more fluid creation of different concept lattices for navigation. The main result
of the usability study is it confirms the suitability of the concept lattice as a navigation
paradigm for image browsing. We also demonstrate how distance and similarity mea-
sures within the concept lattice can be used for approximate matching when search
terms do not result in a precise match to a formal concept. The experience with the iter-
ative development of IMAGE-SLEUTH has lead to new insights in search using concept
lattices that are being realised for the creation of dynamic contexts and the navigation
of Web content.
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Abstract. In this paper, we present research trends carried out in the
Orpailleur team at loria, showing how knowledge discovery and knowl-
edge processing may be combined. The knowledge discovery in databases
process (kdd) consists in processing a huge volume of data for extracting
significant and reusable knowledge units. From a knowledge representa-
tion perspective, the kdd process may take advantage of domain knowl-
edge embedded in ontologies relative to the domain of data, leading to the
notion of “knowledge discovery guided by domain knowledge” or kddk.
The kddk process is based on the classification process (and its multi-
ple forms), e.g. for modeling, representing, reasoning, and discovering.
Some applications are detailed, showing how kddk can be instantiated
in an application domain. Finally, an architecture of an integrated kddk

system is proposed and discussed.

1 Introduction

In this presentation, we present research trends carried out within in the Or-
pailleur team at loria, showing multiple aspects of knowledge discovery and
knowledge processing. The knowledge discovery in databases process –hereafter
kdd– consists in processing a huge volume of data in order to extract knowl-
edge units that are significant and reusable. Assimilating knowledge units to
gold nuggets, and databases to lands or rivers to be explored, the kdd process
can be likened to the process of searching for gold (in the same way, kdd is
compared with archeology in [7]). This explains the name of the research team:
the “orpailleur” denotes in French a person who is searching for gold in rivers
or mountains. Moreover, the kdd process is iterative, interactive, and generally
controlled by an expert of the data domain, called the analyst. The analyst se-
lects and interprets a subset of the extracted units for obtaining knowledge units
having a certain plausibility. As a person searching for gold and having a certain
knowledge of the task and of the location, the analyst may use its own knowl-
edge but also knowledge on the domain of data for improving the kdd process.
Indeed, the objective of this paper is to show the role that can be played by
domain knowledge within the kdd process.

From an operational point of view, the kdd process is performed within a kdd

system including databases, data mining modules, and interfaces for interactions,

S. Ben Yahia et al. (Eds.): CLA 2006, LNAI 4923, pp. 22–41, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Rough Data, databases
↓ Domain understanding
↓ Data selection (windowing)

Selected data
↓ Cleaning / Preparation

Prepared data
↓ Data mining process (discovering patterns)
↓ Numerical and symbolic KDD methods

Discovered patterns
↓ Post-processing of discovered patterns
↓ Interpretation / Evaluation

Knowledge units for knowledge systems and problem-solving

Fig. 1. From data to knowledge units: the objective of the knowledge discovery process
is to select, prepare and extract knowledge units from different data sources. For effec-
tive reuse, the extracted knowledge units have to be represented within an adequate
knowledge representation formalism.

e.g. editing and visualization. The kdd process is based on three main operations:
selection and preparation of the data, data mining, and finally interpretation of
the extracted units (see Figure 1).

A way for the kdd process to take advantage of domain knowledge is to be in
connection with an ontology relative to the domain of data, a step towards the
notion of knowledge discovery guided by domain knowledge or kddk. In the kddk

process, knowledge units that are extracted have still a life after the interpre-
tation step: they must be represented in an adequate knowledge representation
formalism for being integrated within an ontology and reused for problem-solving
needs. In this way, the results of the knowledge discovery process may be reused
for enlarging existing ontologies. The kddk process shows that knowledge rep-
resentation and knowledge discovery are two complementary tasks: no effective
knowledge discovery without domain knowledge!

Hereafter, we present various instantiations of the kddk process that are all
based on the idea of classification. Classification is a polymorphic process in-
volved in various tasks, e.g. modeling, mining, representing, and reasoning (see
also [42,10,53]). Accordingly, a knowledge-based system may be designed, fed up
by the kddk process, and used for problem-solving in application domains, e.g.
agronomy, astronomy, biology, chemistry, and medicine (these application do-
mains are studied in the Orpailleur team). A special mention has to be made for
Semantic Web activities, involving in particular text mining, content-based doc-
ument mining, and intelligent information retrieval (see for example [16,8,41]).

The paper is organized as follows. In the next section, symbolic methods for
kdd and the Coron platform are introduced. Then, research trends in kddk

are presented and detailed, showing how knowledge can be embedded at each
step of the kdd process. In the last section, an architecture for an integrated
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kddk system is described, and the kdd and kddk processes are studied with
respect to this integrated architecture.

2 Methods and Systems for KDD

The kdd process is based on data mining methods that are either symbolic or
numerical [19,20,14]. The methods that are used in the Orpailleur team are the
following (mainly symbolic methods):

– Symbolic methods based on lattice-based classification (concept lattice de-
sign or formal concept analysis [18]), frequent itemsets search, and associa-
tion rule extraction [35]. These symbolic methods are more deeply described
in the next subsection.

– Numerical methods based on second-order Hidden Markov Models (hmm2,
initially designed for pattern recognition) [30,29]. Hidden Markov Models
have good capabilities for locating stationary segments, and are mainly used
for mining temporal and spatial data. The CarottAge system1 is developed
in the Orpailleur team for analyzing numerical spatio-temporal data.

In the following, the focus is on symbolic kdd methods. However, an ongoing
research work holds on the combination of symbolic and numerical methods,
that is discussed in section 3.4.

2.1 Lattice Design, Itemset Search and Association Rule Extraction

Classification problems can be formalized by means of a class of individuals
(or objects), a class of properties (or attributes), and a binary correspondence
between the two classes, indicating for each individual-property pair whether the
property applies to the individual or not [3,18,8]. The properties may be features
that are present or absent, or the values of a property that have been transformed
into binary variables. Lattice-based classification relies on the analysis of such
binary tables and may be considered as a symbolic data mining technique to be
used for extracting (from a binary database) a set of concepts organized within
a hierarchy (i.e. a partial ordering). The extraction of frequent itemsets, i.e. sets
of properties or features of data occurring together with a certain frequency, and
of association rules emphasizing correlations between sets of properties with a
given confidence, are related activities.

The search for frequent itemsets and association rule extraction are well-
known symbolic data mining methods. These processes usually produce a large
number of items and rules, leading to the associated problems of “mining the
sets of extracted items and rules”. Some subsets of itemsets, e.g. frequent closed
itemsets (fcis), allow to find interesting subsets of association rules, e.g. infor-
mative association rules. This is why several algorithms are needed for mining
data depending on specific applications.
1

CarottAge is a free software developed in the Orpailleur team, with a gpl license
since 2002, see http://www.loria.fr/∼jfmari/App/

http://www.loria.fr/~jfmari/App/
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2.2 Rare Itemsets and Rules

Among useful patterns extracted from a database, frequent itemsets are usually
thought to unfold “regularities” in the data, i.e. they are the witnesses of recur-
rent phenomena and they are consistent with the expectations of the domain
experts. In some situations however, it may be interesting to search for “rare”
itemsets, i.e. itemsets that do not occur frequently in the data (contrasting fre-
quent itemsets). These correspond to unexpected phenomena, possibly contra-
dicting beliefs in the domain. In this way, rare itemsets are related to “excep-
tions” and thus may convey information of high interest for experts in domains
such as biology or medicine. For example, suppose an expert in biology is inter-
ested in identifying the cause of cardiovascular diseases (CVD) for a given data-
base of medical records. A frequent itemset such as “{elevated cholesterol level,
CVD}” may validate the hypothesis that these two items are frequently asso-
ciated, leading to the possible interpretation “people having a high cholesterol
level are at high risk for CVD”. On the other hand, the fact that “{vegetarian,
CVD}” is a rare itemset may justify that the association of these two itemsets is
rather exceptional, leading to the possible interpretation “vegetarian people are
at a low risk for CVD”. Moreover, the itemsets {vegetarian} and {CVD} can be
both frequent, while the itemset {vegetarian, CVD} is rare.

Rare cases deserve special attention because they represent significant diffi-
culties for data mining algorithms. The underlying mining problems have been
studied in detail, with different names, e.g. exceptions, negative rules (see for
example [28,43,52,54,37]. These approaches are, most of the time, based on adap-
tions of the general levelwise Apriori algorithm. These methods typically retrieve
large sets of rare itemsets and association rules, but these methods may remain
incomplete –rare associations are be discovered– either due to an excessive com-
putational cost or to overly restrictive definitions. Thus, such methods may fail
to collect a large number of potentially interesting patterns.

By contrast, a framework is proposed in [45,44,48] is specifically dedicated to
the extraction of rare itemsets. It is based on an intuitive yet formal definition of
rare itemset. Its goal is to provide a theoretical foundation for rare pattern min-
ing, with definitions of reduced representations and complexity results for mining
tasks, as well as to develop an algorithmic tool suite (within the Coron plat-
form, see next subsection) together with the guidelines for its use. The method,
for computing all rare itemsets is based on two main steps. The first step thereof
is the identification of the minimal rare itemsets with an optimized method that
limits the exploration to frequent generators only (minimal rare itemsets jointly
act as a minimal generation seed for the entire rare itemset family). The second
step is performed to restore all rare itemsets from minimal rare itemsets.

2.3 The Coron Platform

The Coron platform2 is currently developed in the Orpailleur team [46,47]. The
platform is composed of three main modules: (i) Coron-base, (ii) AssRuleX,
2 http://coron.loria.fr

http://coron.loria.fr
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(iii) pre-processing and post-processing modules. The Coron-base module is
aimed at extracting different kinds of itemsets, e.g. frequent itemsets, frequent
closed itemsets, minimal generators, etc. The module contains a collection of im-
portant data mining algorithms, such as Apriori, Close, Pascal, Titanic, Charm,
Eclat, together with adapted algorithms such as Zart and Eclat-Z (plus some
others). This large collection of (efficient) algorithms is one of the main char-
acteristics of the Coron platform. Knowing that each of the algorithms has
advantages and disadvantages with respect to the form of the data to be mined,
and since there is no universal algorithm for processing any arbitrary dataset,
the Coron-base module offers to the user the choice of the algorithm that is
the best suited for his needs.

The second module of the system, AssRuleX (Association Rule eXtractor)
generates different sets of association rules, such as informative rules, generic
basis, and informative basis.

For supporting the whole life-cycle of a data mining task, the Coron platform
proposes modules for cleaning the input dataset and reduce its size if necessary.
The module RuleMiner facilitates the interpretation and the filtering of the
extracted rules. The association rules can be filtered by (i) attribute, (ii) support,
and/or (iii) confidence.

The Coron platform is developed entirely in Java, allowing portability. The
system is operational, and has been tested within several research projects within
the team [12,31].

2.4 A Data-Mining Methodology with the Coron Platform

A methodology was initially designed for mining biological cohorts, but it can be
generalized to any kind of database. It is worth to mention that the whole kddk

process is guided by an analyst. The role of the analyst is important with respect
to the following tasks: selecting the data and interpreting the extracted units.
This methodology is associated to the Coron platform, that offers various tools
necessary for its application in a single platform (nevertheless another platform
can be used).

The methodology consists of the following steps: (1) Definition of the study
framework, (2) Iterative step: data preparation and cleaning, pre-processing
step, processing step, post-processing step, validation of the results and Gener-
ation of new research hypotheses, feedback on the experiment. The life-cycle of
the methodology is shown in Figure 2.

Definition of the Study Framework.
The analyst defines a specific field for the analysis (called hereafter “frame-
work”). Thus, he may choose the type of data he wants to work on, e.g. biological
data, genetic data, or both, unrelated individuals or families, focus on a special
metabolic network or on a particular syndrome.

Iterative Step.
Data preparation and cleaning. Data cleaning is necessary. This step in-
cludes the detection and the possible removal of incomplete and out-of-range
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Fig. 2. The life cycle of KDD within Coron

values. Moreover, several actions for converting the data can be done at this
step, such as:

(1) Addition/creation of new attributes for helping the extraction of associa-
tion rules by combining attributes (intersection, union and complementary).

(2) Deletion of attributes that are not interesting in the chosen biological
framework. This option is close to the projections described below.

(3) Discretization for transforming continuous data into Boolean values, e.g.
by using a threshold defined in the literature, or by separating values of each
continuous variable into quartiles.
Data filtering (pre-processing). Several actions can be carried out that cor-
respond to operations in set theory: complement, union and intersection (with
operations of additions and projections).

(1) Apply projections :
on the rows: i.e. selecting individuals with one or more attributes specified by

the expert,
on the columns: i.e. selecting (or deleting) some attributes.
(2) Consider the complement of a set of individuals satisfying a rule, defined

by the set of individuals that do not satisfy this rule.
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The output of the filtering process is considered as a new dataset on which
data mining procedures can be applied again.
Applying the data mining procedure. This methodology is related to sym-
bolic data mining methods, as, in particular, frequent itemset search and asso-
ciation rule extraction. With the help of the analyst, the necessary thresholds
values can be set for quality measures such as the minimum support and the
minimum confidence for generating frequent itemsets and association rules, re-
spectively. As the process is iterative and interactive, the analyst can change
these thresholds during a next iteration to carry out new experiments.
Post-processing. After filtering and visualizing the rules, those rules containing
the most interesting attributes can be found. If a less relevant attribute is always
present in the rules, it can be considered as “noisy”, and removed from the
input dataset. This means that the dataset is another time modified for a new
association rule extraction.

The iterative step can be repeated until the most relevant rules are found.
The interpretation of the analyst is mobilized both for rule mining and result
visualization.
Rule-mining. In the rule mining step, the analyst has also to make several
choices:

– Choosing rules with a specific form: e.g. selecting rules that only have one
attribute on their left side.

– Selecting rules with an attribute of interest from the point of view of the
analyst, on the left hand side, on the right hand side, or on both sides.

– Classifying the extracted rules in ascending or descending order according
to their support or confidence values, or according to other statistical values
[9].
The classification of rules mining step may be dependent on numerical mea-
sures, e.g. support and confidence, or on domain knowledge as shown in some
experiments [21].

– Selecting rules with a support belonging to a given interval [a, b]; returning
rules with a support less than (or more than) or equal to a given value c.
These selections can also be applied with the other statistical measures cited
above.

Visualization of the results. A visualization method adapted to symbolic
data mining method procedure has to be chosen. For frequent itemset search
leading to the extraction of less frequent itemsets, concept lattices may be used
beneficially [22].
Validation of the results and generation of new research hypotheses.
The evaluation of the rules can be done either by statistical tests, data analysis
methods, i.e. automatic classification, component analysis, or with knowledge-
based methods, e.g. classification-based reasoning, formal concept analysis. The
generated results allow the expert to suggest new directions of research. Ac-
cordingly, these new hypotheses are tested by new experiments, for example,
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managed at the biological level, like genetic epidemiological studies or wet lab-
oratory experiments.

3 Research Directions for KDDK

The principle summarizing kddk can be read as follows: going “from complex
data units to complex knowledge units guided by domain knowledge” (kddk)
or “knowledge with/for knowledge”. This principle is discussed below, along
research activities such as graph mining, spatio-temporal data mining, text min-
ing and Semantic Web, knowledge discovery in life sciences, combining symbolic
and numerical data mining methods for hybrid mining, and finally mining a
knowledge base, a kind of “meta-knowledge discovery process”. All these re-
search activities share the fact that the mining process is guided and enhanced
by domain knowledge (similar ideas are also discussed in [11,53]).

3.1 KDDK and the Mining of Complex Data

Lattice-based classification, formal concept analysis, itemset search and associ-
ation rule extraction, are suitable paradigms for symbolic kddk, that may be
used for real-sized applications [51]. Global improvements may be carried on
the ease of using of the data mining methods, on the efficiency of the methods
[24], and on adaptability, i.e. the ability to fit evolving situations with respect to
the constraints that may be associated with the kddk process. Accordingly, the
research work presented hereafter is in concern with the extension of symbolic
methods to complex data, e.g. objects with multi-valued attributes, relations,
graphs, texts, and real world data.

KDDK in databases of chemical reactions.
The mining of chemical chemical reaction databases is an important task for at
least two reasons (see also [23]): (i) the first reason is the challenge represented by
this task regarding kddk to be set on, (ii) the second reason lies in the industrial
needs that can be met whenever substantial results are obtained. Chemical reac-
tions are complex data, that may be modeled as undirected labeled graphs. They
are the main elements on which synthesis in organic chemistry relies, knowing
that synthesis —and accordingly chemical reaction databases— are of first im-
portance in chemistry, but also in biology, drug design, and pharmacology. From
a problem-solving point of view, synthesis in organic chemistry must be consid-
ered at two main levels of abstraction: a strategic level where general synthesis
methods are involved –a kind of meta-knowledge– and a tactic level where spe-
cific chemical reactions are applied. An objective for improving computer-based
synthesis in organic chemistry is aimed at discovering general synthesis methods
from currently available chemical reaction databases for designing generic and
reusable synthesis plans.

A preliminary research work has been carried on in the Orpailleur team [5],
based on frequent levelwise itemset search and association rule extraction, and
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applied to standard chemical reaction databases. This work has given substan-
tial results for the expert chemists. At the moment, for extending this first
work, a graph-mining process is used for extracting knowledge from chemical
reaction databases, directly from the molecular structures and the reactions
themselves, This research work is currently under development, in collaboration
with chemists, and is in accordance with needs of chemical industry [38].

KDDK and the mining of spatio-temporal data.
Temporal and spatial data are complex data to be mined because of their internal
structure, that can be considered as multi-dimensional. Indeed, spatial data may
involve two or three dimensions for determining a region and complex relations
as well for describing the relative positions of regions between each others (as
in the RCC-8 theory for example [26,36]). Temporal data may present a linear
but also a two-dimensional aspect, when time intervals are taken into account
and have to be analyzed (using Allen relations for example). In this way, mining
temporal or spatial data are tasks related to kddk. Spatial and temporal data
may be analyzed with numerical methods such as Hidden Markov Models, but
also with symbolic methods, such as levelwise search for frequent sequential or
spatial patterns.

In the medical domain, the study of chronic diseases is a good example of
kddk process on spatio-temporal data. An experiment for characterizing the
patient pathway using the extraction of frequent patterns, sequential and not
sequential, from the data of the pmsi

3 system associated with the “Lorraine
Region” is currently under investigation. Details on this work are given in [22].

3.2 KDDK, Text Mining and Semantic Web

KDDK and text mining.
The objective of a text mining process is to extract new and useful knowledge
units in a large set of texts [21,10,9]. The text mining process shows some specific
characteristics due to the fact that texts are complex objects written in natural
language. The information in a text is expressed in an informal way, following
linguistic rules, making the mining process more complex. To avoid information
dispersion, a text mining process has to take into account –as much as possible–
paraphrases, ambiguities, specialized vocabulary, and terminology. This is why
the preparation of texts for text mining is usually dependent on linguistic re-
sources and methods. In addition, from a kddk perspective, the text mining
process is aimed at extracting new knowledge units from texts with the help of
background knowledge. The interpretation of a text relies on knowledge units
shared by the authors and the readers. A part of these knowledge units is ex-
pressed in the texts and may be extracted by the text mining process. Another
part of these knowledge units, background knowledge, is not explicitly expressed
in the text and is useful to relate notions present in a text, to guide and to help

3 For “Programme de Médicalisation des Systèmes d’Informations”. This is the name
of the information system collecting the administrative data for an hospital.



First Elements on Knowledge Discovery Guided by Domain Knowledge 31

the text mining process. Background knowledge is encoded in a knowledge base
associated to the text mining process. Text mining is especially useful in the
context of semantic Web, for manipulating textual documents by their content.

The studies on text mining carried out in the Orpailleur team hold on real-
world texts in application domains such as astronomy, biology and medicine,
using mainly symbolic data mining methods such as i.e. frequent itemset search
and association rule extraction [4]. This is in contrast with text analysis ap-
proaches dealing with specific language phenomena. The language in texts is
considered as a way for presenting and accessing information, and not as an
object to be studied for its own. In this way, the text mining process may be
involved in a loop used to enrich and to extend linguistic resources. In turn, lin-
guistic and ontological resources can be exploited to guide a “knowledge-based
text mining process”.

KDDK within the context of Semantic Web.
Semantic Web constitutes a good platform for experimenting ideas on knowledge
discovery –especially text mining–, knowledge representation and reasoning. In
particular, the knowledge representation language associated with the Semantic
Web is the owl language, based on description logics (or dls, see [2]). In owl,
knowledge units are represented within concepts (or classes), with attributes
(properties of concepts, or relations, or roles), and individuals. The hierarchical
organization of concepts (and relations) relies on a subsumption relation that is a
partial ordering. The inference services are based on subsumption, concept and
individual classification, two tasks related to “classification-based reasoning”.
Concept classification is used for inserting a new concept at the right location
in the concept hierarchy, searching for its most specific subsumers and its most
general subsumees. Individual classification is used for recognizing the concepts
an individual may be an instance of. Furthermore, classification-based reasoning
may be extended into case-based reasoning (cbr), that relies on three main
operations: retrieval, adaptation, and memorization. Given a target problem,
retrieval consists in searching for a source (memorized) problem similar to the
target problem. Then, the solution of the source problem is adapted to fulfill
the constraints attached to the target problem. When there is enough interest,
the target problem and its solution may be memorized in the case base to be
reused. In the context of a concept hierarchy, retrieval and adaptation may be
both based on classification (and “adaptation-guided retrieval” [17]).

In the framework of Semantic Web, the mining of textual documents on the
Web, or “Web document mining” [6], can be considered from two main points of
view: (i) mining the content of documents, involving text mining, (ii) mining the
internal and external –hypertext links– structure of pages, involving information
extraction. Web document mining is a major technique for the semi-automatic
design of real-scale ontologies, the backbone of Semantic Web. In turn, ontologies
are used for annotating the documents, enhancing document retrieval and docu-
ment mining. In this way, Web document mining improves annotation, retrieval,
and the understandability of documents, with respect to their structure and their
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content. The extracted knowledge units can then be used for completing domain
ontologies, that, in turn, guide text mining, and so on.

A research carried on in the team aims at understanding the structure of doc-
uments for analyzing and for improving text mining. The design of a system for
extracting information units –that have to be turned into knowledge units after
interpretation– from Web pages involves a wrapper-based machine learning algo-
rithm combined with a classification-based reasoning process, taking advantage
of a domain ontology implemented within the Web Ontology Language (owl).
The elements returned by the process are used as “semantic annotations” for
understanding and manipulating the documents with respect to their structure
and content [50,49]. The application domain of this research work is the study
of research themes in the European Research Community. This study supports
the analysis of research themes and detection of research directions.

3.3 KDDK for Life Science: Organizing and Navigating Biological
Sources

The application domains that are currently investigated at the moment by the
Orpailleur team are related with life sciences, with a particular emphasis on biol-
ogy (bioinformatics) and medicine. Indeed, there are various reasons explaining
why life sciences are a major application domain. In general, life sciences are get-
ting more and more importance as a domain application for computer scientists.
In this context, the collaboration between biologists and computer scientists is
very active, and the understanding of biological systems provides complex prob-
lems for computer scientists. When these problems are solved (at least in part),
the solutions bring new ideas not only for biologists but also for computer sci-
entists in their own research work. Thus, advances in research appear on both
sides, life and computer sciences.

Knowledge discovery is gaining more and more interest and importance in
life sciences for mining either homogeneous databases (dbs) such as protein se-
quences or structures, heterogeneous dbs for discovering interactions between
genes and environment, or between genetic and phenotypic data, especially for
public health and pharmacogenomics domains. The latter case appears to be one
main challenge in knowledge discovery in biology and involves knowledge discov-
ery from complex data and thus kddk. The interactions between researchers in
biology and researchers in computer science improve not only knowledge about
systems in biology, but knowledge about computer science as well. Solving prob-
lems for biologists using kddk methods may involve the design of specific mod-
ules that, in turn, leads to adaptations of the kddk process, especially in the
preparation of data and in the interpretation of the extracted units.

A research work carried on in the team is in concern with the search and the
access to relevant biological sources (including biological dbs) satisfying a set of
given constraints, expressed with respect to concepts lying in a domain ontology
–as in the BioRegistry repository [40]. The sources may be described in terms of
these concepts, yielding a formal context, from which a concept lattice can be
built [32]. Given a specific query, a lattice-based information retrieval process is
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set on. The classification of the query in the lattice returns a ranked list of relevant
sources, according to the characteristics of the sources with respect to the charac-
teristics of the query (see [33]). The next step is to generalize the approach, and to
use a “fuzzy concept lattice” and “fuzzy formal concept analysis” (see for example
[39]). Moreover, studies hold on complex question answering methods taking into
account fuzzy concept lattices, nested queries (intersection, union, and comple-
ment), analogical queries, and composition of answers elements. These techniques
are still under study.

Another challenge is to extract knowledge from heterogeneous dbs for under-
standing interactions between clinical, genetic and therapeutic data. For exam-
ple, a given genotype, i.e. a set of selected gene versions, may explain adverse
clinical reactions (e.g. hyperthermy, toxic reaction. . . ) to a given therapeutic
treatment. This requires first the integration of both genomic and clinical data
into a data warehouse on which kddk methods have to be applied. This research
work is connected with Semantic Web purposes, and in particular with the fol-
lowing elements: (i) data preparation and extracted units interpretation based
on domain ontologies, (ii) knowledge edition for building and enriching domain
ontologies, (iii) knowledge management for access to knowledge units, querying
and reasoning (for problem-solving).

3.4 Combining Symbolic and Numerical Methods for KDDK

Why combining symbolic and numerical methods.
hmm2 have proved to be a valuable tool for extracting knowledge from com-
plex numerical data, e.g. spatio-temporal data. In this way, the CarottAge

system has been involved for data mining purposes in two main application do-
mains, namely biology and agronomy. In collaboration with biologists, genome
segmentation and interpretation have been investigated [15]. In collaboration
with agronomists, spatial and temporal land-use data have been mined for ex-
tracting and understanding crop successions, i.e. the way how crops are carried
out during a given period of time [25,30]. In these two applications, the effort
has focused on two main points, with respect to the questions of the biologists
and of the agronomists: (i) the elaboration of a mining process for extracting
dependencies in temporal and spatial data involving an unsupervised classifica-
tion process based on hmm2, (ii) the specification of associated and adequate
visualization tools giving a synthetic view of the extraction process results to
the experts in charge of interpreting the extracted classes and/or of specifying
new experiment directions.

However, some operations remain very difficult to be carried out and could
be eased using symbolic methods: (i) the modeling of the hmm2 process for a
set of given data, (ii) the interpretation of units extracted by hmm2, (iii) the
organization and the visualization of the extracted units for further reuse, e.g.
as knowledge units in a knowledge-based system. A proposition is to combine
hmm2 with symbolic methods, such as case-based reasoning and concept lattices,
for helping the modeling and interpretation process.
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A challenge is to set on a methodology for hybrid kddk, coupling hmm2 and
symbolic methods, that can be adapted and reused as a general kddk method
on various data, leading to a multi-functional and multi-purpose kddk system.

Combining CBR and HMM.
Case-based reasoning seems to be especially interesting since researchers in an
application domain often use their own knowledge or knowledge resulting from
first experiments to improve steps within the data mining process, e.g. modeling
and interpretation. In this way, the elements of the cases within the case-based
reasoner can be composed of knowledge units about parameters of the hmm2, and
as well of knowledge units on the design –modeling, data preparation–, and the
interpretation –relying on ontological knowledge– of the hmm2. In addition, cbr

can be of great interest for recording mining strategies that can be adapted and
reused in similar situations. Indeed, a study on cbr for guiding mining scenarios
in a given situation –with retrieval and adaptation of a similar situation– has not
yet been carried on and should give substantial results. More generally, hmm2-
based data mining process may take advantage of being coupled with cbr, that
can be used at a strategic level for guiding the hmm2-based data mining process.

Combining concept lattices and HMM.
For their part, concept lattices can be used to organize and to visualize the results
of the hmm2-based data mining process. The objects resulting of the application
of the hmm2 process can be characterized by a set of properties. For example,
in a spatio-temporal framework, space regions may be considered as objects and
characteristics of the region at a given time can be considered as properties,
yielding a kind of formal context. In addition, itemsets and association rules
may also be extracted from such a context, offering an easy way of interpreting
results of the hmm2 process.

The analysis of complex data in biology also calls for the coupling of symbolic
and numerical data mining methods. There are complex data on which hmm2

show a good behavior, for recognizing and extracting regular structures. Such
complex data hold on interactions between processes or agents, such as data
from transcriptomic biochips –dna chips or microarrays– experiments (used for
extracting knowledge on interactions between plants and microorganisms). Still,
an important objective of this kind of study is to investigate and to understand
more deeply the modeling of biological systems, at symbolic and numerical levels.

3.5 Meta-knowledge Discovery of Mining Knowledge Bases

The Kasimir system.
The main tasks of the Kasimir system are decision support and knowledge
management for the treatment of cancer. The system is developed within a
multidisciplinary research project in which participate researchers from different
community (computer science, ergonomics, and oncology). For a given cancer
localization, a treatment is based on a protocol similar to a medical guideline.
For most of the cases (about 70%), a straightforward application of the protocol
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is sufficient and provides a solution, i.e. a treatment, that can be directly reused.
A case out of the 30% remaining cases is said to be out-of-the-protocol, i.e. either
the protocol does not provide a treatment for this medical case, or the proposed
solution raises some difficulties, e.g. contraindication, treatment impossibility,
etc. For such an out-of-the-protocol case, oncologists try to adapt the protocol.
In turn, these adaptations can be used to propose evolutions of the protocol
based on a confrontation with actual cases. The idea is then to make suggestions
for protocol evolutions based on frequently performed adaptations.

In knowledge-intensive cbr, the reuse of cases is generally based on adapta-
tion, the goal of which is to solve the target problem by adapting the solution
of a source case. The adaptation process is based on adaptation knowledge that
–for the main part– is domain-dependent, and thus needs to be acquired for a
new application of cbr. Adaptation knowledge plays a key issue in applications,
e.g. in knowledge-intensive case-based reasoning systems [1].

In parallel, the Semantic Web technology relies on the availability of large
amount of knowledge in various forms [16,41]. The acquisition of ontologies is one
of the important issues that is widely explored in the Semantic Web community.
Moreover, the acquisition of decision and adaptation knowledge for the Semantic
Web has not been so deeply explored, though this kind of knowledge can be
useful in numerous situations. For example, given a decision protocol and an
adaptation knowledge base, the Kasimir system can be used to apply and/or
to adapt the protocol to specific medical situations.

Semi-automatic acquisition of adaptation knowledge.
The goal of adaptation knowledge acquisition (aka) is to mine a case base, to
extract adaptation knowledge units, and to make these units operational. Until
now, the research work on cbr in the Orpailleur team has mainly focused on the
design of algorithms and knowledge representation formalisms for implementing
the adaptation process in a cbr system. A next step is to investigate the aka

process, a research topic that has still not received so much in the cbr com-
munity. A parallel research topic is to apply aka to the extraction of decision
knowledge units. Indeed, adaptation knowledge is closely related with decision
theory, e.g. the Wald pessimistic criterion is frequently applied when pieces of
information about a patient are missing.

Accordingly, the objective of the research work on aka is to study how kdd

techniques can be used for feeding a knowledge server embedded in a semantic
portal –as the Kasimir semantic portal [13]– and thus to instantiate the kddk

process. In the Kasimir semantic portal, owl-based formalisms for representing
medical ontologies, decision protocols (the case base), and adaptation knowledge,
are designed. Web services associated to the cbr process are developed. Several
protocols are implemented, with a few of them including adaptation knowledge.

Practically, aka can be considered from two main points of view. aka from
experts is based on ‘manual” analysis of documents related to current prob-
lems. The aka from expert process leads to the elaboration of adaptation rules,
depending on formal parameters and associated with explanations. The adap-
tation rules are human-understandable –thanks to explanations– but they need
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additional knowledge for instantiating the parameters and being applied (more
on aka from experts is given in [27,34]).

Semi-automatic aka is based on the principles of kdd, and involves data
preparation, data mining, and interpretation of the extracted units, under the
control of an analyst. The input of the aka process is a set of adaptations –thus
elements at the knowledge level– and the output is a set of adaptation rules. Such
an adaptation rule is an operational association rule, that lack explanations.
Mixed aka combines aka from experts and semi-automatic aka for supplying
operational and human-understandable adaptation knowledge.

In the current experiments within the Kasimir system, semi-automatic aka is
based on frequent itemset search.A system for aka, named CabamakA–casebase
mining for aka, is currently under development within the Kasimir system and
relies on semi-automatic aka [12]. The CabamakA system analyzes a simple rep-
resentation of the variations Δu between units of knowledge u1 and u2, where Δu
encodes the substitutions transforming u1 into u2. The variations are represented in
an expressivedl-based formalism, allowing a high-level expression of the extracted
adaptation rules.

Beyond cbr, such a research work can be useful for ontology alignment: an
alignment expresses a correspondence between the elements of two ontologies,
but it could also express the variations between corresponding elements, within
a rich representation formalism for the variations.

4 Towards an Integrated KDDK System

From a global point of view, the research objectives for kddk can be summarized
as follows:

– A methodology for a “knowledge discovery from complex data guided by
domain knowledge process” (kddk), i.e. a process leading from complex data
units to complex knowledge units taking advantage of domain knowledge, at
each step of the knowledge discovery process.

– A combination of symbolic and numerical data mining methods for setting
up a complete and hybrid mining methodology to be applied on various types
of data.

– An implementation of the “knowledge discovery from complex data guided
by domain knowledge process” within an operational system, to be used
on a large set of data types, e.g. textual documents, genomic data, spatio-
temporal data, graphs, and even on sets of knowledge units (a kind of meta-
knowledge mining), i.e. mining a knowledge base instead of a database.

– Accordingly, the design of a kddk system, based on the above principles,
and involved in application domains such as astronomy, agronomy, biology,
chemistry, medicine, for decision support and problem-solving.

From a middle-term perspective, a system for kddk can be considered as a
“decentralized system” the architecture of which is described hereafter.
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Fig. 3. An architecture for a system aimed at “knowledge discovery (from complex data)
guided by domain knowledge process (kddk)”. The classical kdd process can be read
from left to right, while, by contrast, the kddk system can be read from right to left.

– One or several ontologies (knowledge bases) include knowledge from differ-
ent domains with different points of view, and as well, a case base. A set of
services are related through a semantic portal, for knowledge editing, navi-
gating, and visualizing the ontologies.

– An inference engine provides, in association with the knowledge bases, a
collection of inference rules for problem-solving purposes, among which sub-
sumption, classification (lattice-based classification, clustering), case-based
reasoning. Reasoning services are present for handling concrete datatypes
such as strings or numbers (and possibly, for controlling procedural or func-
tional reasoning modes if-needed).

– A set of heterogeneous databases holding on a domain to be mined for pro-
viding knowledge units enriching domain ontologies.

– A platform for kddk proposes a collection of data mining modules –such as
the Coron platform– and a set of services for data preparation and extracted
unit interpretation.

Moreover, the system has to provide channels for allowing communications
with human agents, such as experts and end-users. The resulting kddk system
architecture has to be reusable in any application domain. Accordingly, the in-
tegration of such a kddk system in the framework of the semantic Web can be
seen as follows. The data sources, i.e. databases, sets of documents, are explored,
navigated, and queried, under the supervision of an analyst, thanks to a kddk

process guided by knowledge bases of the domain. The data are prepared and
manipulated by the kddk process, while the knowledge units are validated by
the analyst, and then manipulated by the inference engine.

The figure 3 presents the architecture proposal for a kddk system, in which
different scenarios can be made operational. Heterogeneous sources (e.g. data-
bases) feed the kdd system (1), under the supervision of an analyst (2), using
available domain knowledge (3). The kdd system returns new knowledge units
for extending and enriching a knowledge base (4), that may be queried through a
semantic portal (5) by distant geographically distributed users (users A and B).
The users A and B query the portal (6A, 6B), that in turn may use the services
of a knowledge base and the associated inference engine (7A, 7B). When the
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available knowledge provides, with the help of the inference engine, an answer to
the request (8A), this answer is transmitted to the user (9A). Otherwise (8B),
the request is transferred in a filtering module used by the kdd system (9B) for
mining the available data, trying to extract information related to the request.
The resulting extracted knowledge units relying on this filter (10B) may provide
an answer to the user (11B).

5 Conclusion

In this paper, we have presented the research work carried out in the Orpailleur
team at loria. Multiple and combined aspects of knowledge discovery and
knowledge processing have been introduced and discussed: symbolic kdd meth-
ods such as lattice-based classification itemset search, and association rule ex-
traction, and numeric methods such as hmm2. Next, the kdd process has been
considered from a knowledge representation perspective, explaining how and why
the kdd process may take advantage of domain knowledge embedded in ontolo-
gies relative to the domain of data. This perspective leads to the idea of kddk,
for knowledge discovery (from complex data) guided by domain knowledge. The
kddk process is based on classification tasks, for modeling, representing, rea-
soning, and discovering. Various instantiations of the kddk process have been
described, among which the mining of molecular graphs –for knowledge discovery
in chemical reaction databases–, text mining and Semantic Web for designing
and enlarging ontologies from documents, knowledge discovery in life sciences,
and hybrid knowledge discovery, combining numerical and symbolic methods for
data mining. An original experiment has also been introduced and discussed:
meta-knowledge mining, or mining a knowledge base instead of a database. This
research work has been carried out for the need of adaptation knowledge ac-
quisition (aka), that is a promising research domain, and that can be reused
for mining various kind of strategical knowledge units, e.g. decision knowledge
units. At the end of the paper, an architecture of an integrated kddk system
has been proposed and discussed.
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Éditions Toulouse

46. Szathmary, L., Napoli, A.: Coron: A framework for levelwise itemset mining algo-
rithms. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403,
pp. 110–113. Springer, Heidelberg (2005)

47. Szathmary, L., Napoli, A., Kuznetsov, S.O.: Zart: A multifunctional itemset mining
algorithm. In: Diatta, J., Eklund, P., Liquière, M. (eds.) Proceedings of the Fifth
International Conference on Concept Lattices and their Applications, Montpellier,
France, pp. 26–37 (2007)

48. Szathmary, L., Napoli, A., Valtchev, P.: Towards rare itemset mining. In: Pro-
ceedings of the IEEE International Conference on Tools with Artificial Intelligence
(ICTAI), Patras, Greece, IEEE Computer Society Press, Los Alamitos (2007)

49. Ténier, S., Toussaint, Y., Napoli, A., Polanco, X.: Instantiation of relations for
semantic annotation. In: The 2006 IEEE/WIC/ACM International Conference on
Web Intelligence - WI 2006, Hong Kong, pp. 463–472. IEEE Computer Society
Press, Los Alamitos (2006)

50. Ténier, S., Napoli, A., Polanco, X., Toussaint, Y.: Semantic annotation of webpages.
In: Handschuh, S. (ed.) ISWC 2005. LNCS, vol. 3729, Springer, Heidelberg (2005)

51. Valtchev, P., Missaoui, R., Godin, R.: Formal concept analysis for knowledge dis-
covery and data mining: The new challenges. In: Eklund, P.W. (ed.) ICFCA 2004.
LNCS (LNAI), vol. 2961, pp. 352–371. Springer, Heidelberg (2004)

52. Weiss, G.M.: Mining with rarity: a unifying framework. SIGKDD Exploration
Newsletter 6(1), 7–19 (2004)

53. Wille, R.: Methods of conceptual knowledge processing. In: Missaoui, R., Schmidt,
J. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3874, pp. 1–29. Springer,
Heidelberg (2006)

54. Wu, X., Zhang, C., Zhang, S.: Efficient mining of both positive and negative asso-
ciation rules. ACM Transactions on Information Systems 22(3), 381–405 (2004)



Formal Concept Analysis

as Applied Lattice Theory

Rudolf Wille

Technische Universität Darmstadt, Fachbereich Mathematik
wille@mathematik.tu-darmstadt.de

Abstract. Formal Concept Analysis is a mathematical theory of con-
cept hierarchies which is based on Lattice Theory. It has been developed
to support humans in their thought and knowledge. The aim of this paper
is to show how successful the lattice-theoretic foundation can be in ap-
plying Formal Concept Analysis in a wide range. This is demonstrated in
three sections dealing with representation, processing, and measurement
of conceptual knowledge. Finally, further relationships between abstract
Lattice Theory and Formal Concept Analysis are briefly discussed.

1 Introduction

Formal Concept Analysis has been developed since 1979 as part of applied mathe-
matics based on a mathematization of concept and concept hierarchy. The initial
motivation for this development originated from a research seminar at the TU
Darmstadt in which mathematicians tried to understand sense and meaning of
order and lattice theory for our society. This activity was particularly influenced
by the German Scholar of Education, Hartmut von Hentig, who demands in
[He74] that (from time to time) sciences should be restructured to make them
better understandable, available, and criticizable (even beyond disciplinary com-
petence). This means in particular that scientists should rethink their theoretical
developments in order to integrate and rationalize origins, connections, interpre-
tations, and applications. Generally, abstract developments should be brought
back to the common place in perception, thinking, and action. In this sense, re-
structuring lattice theory is understood as an attempt to reinvigorate connections
with our general culture by interpreting lattice theory as concretely as possible,
and in this way to promote better communication between lattice theorists and
potential users of lattice theory (cf. [Wi82]).

The basic connection between ordered structures and concept hierarchies in
human thought originates in the traditional philosophical logic as, for instance,
presented in I. Kant’s lectures on logic [Ka88], where he writes in §7:

“Every concept, as a partial concept, is contained in the presentation
of things; as a ground of cognition, i.e. as a characteristic, it has these
things contained under it. In the former regard, every concept has an
intension [content]; in the latter, it has an extension.
Intension and extension of a concept have an inverse relation to each
other. The more a concept contains under it, the less it contains in it.”

S. Ben Yahia et al. (Eds.): CLA 2006, LNAI 4923, pp. 42–67, 2008.
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In this quotation a concept is viewed as a composition of an extension and an
intension where the extension has “things” under it, while the intension has
“things” in it; furthermore, the more the concept extension has under it, the
less the concept intension has in it. Thus, each collection of concept extensions
can be naturally mathematized by an ordered set, where the dualization of the
ordered set mathematizes the corresponding collection of concept intensions.

The focus on lattices was realized when the notion of a (formal) context
was introduced as a frame in which concept extensions and concept inten-
sions could be constructed (cf. [Wi82]). Mathematically, a formal context is
defined as a triple (G, M, I) where G is a set (of “objects”), M is a set (of “at-
tributes”), and I is a binary relation between G and M where gIm (which means
(g, m) ∈ I) indicates that the object g has the attribute m. A formal concept of
the formal context (G, M, I) is defined as a pair (A, B) with A ⊆ G, B ⊆ M ,
A = {g ∈ G | gIm for all m ∈ B}, and B = {m ∈ M | gIm for all g ∈ A}; A
and B are called the extent and the intent of the formal concept (A, B), respec-
tively. The hierarchical relation subconcept-superconcept - expressed by sentences
as “the formal concept (A1, B1) is a subconcept of the formal concept (A2, B2)”
- is modelled by the definition:

(A1, B1) ≤ (A2, B2) :⇐⇒ A1 ⊆ A2 (⇐⇒ B1 ⊇ B2)

The set of all formal concepts of (G, M, I) with this order relation is a complete
lattice, called the concept lattice of the formal context (G, M, I) and denoted by
B(G, M, I). This contextual approach yields a close connection between abstract
lattice theory and the theory of concept lattices because each abstract lattice is
embeddable in a concept lattice and each complete abstract lattice is even iso-
morphic to some concept lattice. This connection makes abstract lattice theory
more meaningful because it yields the fundamental basis for the many appli-
cations of Formal Concept Analysis, the theory of constructing, analysing, and
applying concept lattices (cf. [GW99]).

It should be mentioned that some other approaches have led to theories which
partly overlap with Formal Concept Analysis. Especially, the rich theory about
Galois connections (cf. [DEW04]) relates in many ways with Formal Concept
Analysis. It should at least be mentioned that G. Birkhoff, the father of lat-
tice theory, has already discussed in his first edition of his lattice theory book
[Bi40] the Galois connection between objects and attributes with respect to
the relation: “an object has an attribute”. Another approach of activating Ga-
lois connections has been founded in the monograph [BM70] where, in partic-
ular, a binary relation between two sets is used to construct a so-called Ga-
lois lattice whose elements are corresponding pairs of subsets of the two given
sets.

This paper shall explain in more detail how the mathematization of concept
and concept hierarchy leads to the understanding of Formal Concept Analysis
as part of applied lattice theory.
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First, Formal Concept Analysis has been developed as a mathematical theory
based on set-theoretical semantics, i.e., all notions of Formal Concept Analy-
sis are mathematically defined in terms of set theory. These notions can espe-
cially be assigned to Lattice Theory; this becomes substantiated, for instance,
by B. A. Davey’s and H. A. Priestley’s book “Introduction to lattices and or-
der” [DP02] in which the third chapter is fully devoted to Formal Concept
Analysis.

Secondly, many notions of Formal Concept Analysis can be understood as
mathematization of non-mathematical notions; for instance, a formal context
mathematizes a context represented by a cross table, an extent (intent) mathe-
matizes a concept extension (concept intension) and a formal concept mathema-
tizes a concept in the understanding of traditional philosophical logic, a concept
lattice mathematizes a concept hierarchy derived from a context represented
by a cross table, etc. All those mathematical notions may serve as bridges to
non-mathematical fields and may support these fields with patterns of formal
thought; in other words, they make possible the application of mathematical
thinking to problems in the real world. This is the reason why Formal Concept
Analysis can be understood as part of Applied Lattice Theory.

The next three sections discuss applications of Formal Concept Analysis in
the field of conceptual knowledge under the headings “Representation”, “Rep-
resenting and Processing”, and “Measurement”. Supporting the representation
of conceptual knowledge is basic for all applications of Formal Concept Analysis
and therefore should make the represented contents as transparent as possible.
The processing of conceptual knowledge builts on conceptual knowledge repre-
sentations and should therefore be developed on top of the conceptual structures
of the underlying content representations. Measurement of conceptual knowledge
structures gaines from both, representation and processing, but it has, moreover,
to meaningfully include numeric and algebraic structures.

2 Representation of Conceptual Knowledge

Conceptual knowledge representations are constituted in human thought by
semantic structures. Therefore such representations can be comprehended in
terms of Semantology, the theory and methodology of semantic structures (see
[GW06]). The meaning of semantic structures in the field of Conceptual Knowl-
ede Representation can be analysed on at least three levels:

– First, there is the meaning on the concrete level on which the considered
conceptual knowledge originates. This is usually the semantics belonging
to the fields whose language and understanding are used to describe that
knowledge.

– Second, there is the meaning on the general philosophic-logical level on which
the semantics is highly abstracted from the semantics of the concrete level,
but is still related to actual realities. It is the semantics of the traditional
philosophical logic based on the main functions of human thought: concept,
judgment, and conclusion (cf. [Ka88]).
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– Third, there is the meaning on the mathematical level on which the semantics
is strongly restricted to the purely abstract: like numbers, ideal geometric
figures and, since the twentieth century, set structures (and their generaliza-
tions).

Fig. 1. Context and concept hierarchy about the sound pattern of English

Let us illustrate this three-fold semantics by the example presented in Fig. 1. On
the concrete level, context and concept hierarchy are understood with respect
to the linguistic semantics as presented in [CH68], i.e., the context represents
an elementary semantic structure of the English speech sounds and the corre-
sponding concept hierarchy represents the related conceptual semantic structure
of these sounds. On the philosophic-logical level, the abstract-logical structure
of the speech sounds and their concepts comes under consideration; a general
discovery is, for example, that there are exactly five atomic concepts classifying
the speech sounds. Finally, on the mathematical level, the formal context and
concept lattice in Fig. 1 represent most abstractly the semantic structure of the
linguistic example; relationships in the mathematical structure are good candi-
dates to be interpreted as interesting relationships in the linguistic structure as,
for instance, the implication: “high, sonorant → vocalic”.

For a comprehensive understanding of the possibilities to apply Formal Con-
cept Analysis, an elaborated mathematical theory of concept lattices has been
worked out over more than 25 years so that there exists now a rich store of meth-
ods and results for applications in a wide range (cf. [GW99], [SW00], [GSW05]).
Many of the research contributions rely on the Basic Theorem on Concept Lat-
tices, which shall therefore be cited here and, moreover, it shall also be used for
deducing a new theorem for basic applications.
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Basic Theorem on Concept Lattices [Wi82]. Let K := (G, M, I) be a
formal context. Then B(K) is a complete lattice, called the concept lattice of
(G, M, I), for which infimum and supremum can be described as follows:

∧

t∈T

(At, Bt) = (
⋂

t∈T

At, (
⋃

t∈T

Bt)II),

∨

t∈T

(At, Bt) = ((
⋃

t∈T

At)II ,
⋂

t∈T

Bt).

In general, a complete lattice L is isomorphic to B(K) if and only if there exist
mappings γ̃ : G −→ L and μ̃ : M −→ L such that
1. γ̃G is

∨
-dense in L (i.e. L = {

∨
X | X ⊆ γ̃G}),

2. μ̃M is
∧

-dense in L (i.e. L = {
∧

X | X ⊆ μ̃M}),
3. gIm ⇐⇒ γ̃g ≤ μ̃m for g ∈ G and m ∈ M ;
in particular, L ∼= B(L, L, ≤) and furthermore: L ∼= B(J(L), M(L), ≤) if the
set J(L) of all

∨
-irreducible elements is

∨
-dense in L and the set M(L) of all∧

-irreducible elements is
∧

-dense in L.

In practice, the basic theorem is most frequently used to examine whether a
line diagram really describes the concept lattice of a given formal context. Let
us demonstrate this checkup at the line diagram in Fig. 1: For the checkup we
assume that the line diagram represents a lattice which we name L; for proving
L ∼= B(K), by the basic theorem, we have only to prove the statements 1., 2., and
3. for our example to confirm the claim that the line diagram in Fig. 1 represents
the concept lattice of the formal context in Fig. 1. Condition 1 holds because each
circle in the diagram is uniquely determined by the set of all letters which can be
reached from the circle by a descending path of line segments. Dually, condition
2 holds because each circle in the diagram is uniquely determined by the set of
all attribute names which can be reached from the circle by an ascending path
of line segments. For justifying condition 3, we have to examine that a speech
sound has an attribute if and only if there is a cross in the table of the formal
context, the row of which is headed by the name of the speech sound and the
column of which is headed by the name of the attribute; this examination gives
a positive result for our example.

Unfortunately, our checkup has a weakness, namely: we have to assume that
the line diagram represents a (complete) lattice. Although this is often true, there
are sometimes hardly idendifiable defects which prevent a lattice structure. To
overcome such problems, we need a mathematization of line diagrams of (finite)
bounded ordered sets as introduces in [Wi07a]:

In general, a line diagram of a finite bounded ordered set O := (O, ≤) is
mathematically defined as a quadruple Dη(O) := (CO, SO, TO, η) formed by

– a set CO of disjoint little circles of the same radius in the Euclidean plane
R

2,
– a set SO of straight line segments in R

2 having at most one point in common,
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– a ternary relation TO ⊆ CO × SO × CO which contains for each s ∈ SO

exactly one triple (c1, s, c2) indicating that the line segment s links up the
circles c1 and c2 in R

2 and that c1 <2 c2 (i.e. for all points pi ∈ ci with
i = 1, 2, the second coordinate of p1 is smaller than the second coordinate
of p2).

– a bijection η : O → CO which makes explicit that the covering pairs o1 ≺ o2

in O are in one-to-one correspondence to the triples (η(o1), s, η(o2)) of TO

(consequently, |≺ | = |TO|).

The line diagrams Dη(O) and Dη̂(Ô) of finite bounded ordered sets O := (O, ≤)
and Ô := (Ô, ≤) are called isomorphic if and only if there exist bijections ζ :
CO → CÔ and σ : SO → SÔ such that (c1, s, c2) ∈ TO ⇐⇒ (ζ(c1), σ(s), ζ(c2)) ∈
TÔ; the corresponding isomorphism is denoted by (ζ, σ).

A cross table which represents a finite context K := (G, M, I) contains the
object names of the objects in G and the attribute names of the attributes in M .
Since those names are understood as proper names (german: Eigennamen), there
is a bijection ν mapping each object resp. attribute in G∪̇M to its proper name.
A line diagram Dη̄(B(K)) together with the bijection ν is called a (νG, νM)-
labelled line diagram denoted by D

ν
η̄(B(K)). Analogously, for a finite bounded

ordered set O and mappings γ̌ : G → O and μ̌ : M → O, a line diagram Dη(O)
together with the introduced naming bijection ν on G∪̇M is called a (νG, νM)-
labelled line diagram denoted by D

ν
η(O).

Basic Theorem on Labelled Line Diagrams of Finite Concept Lattices.
[Wi07a] Let B(K) be the concept lattice of a finite context K := (G, M, I) and
let O := (O, ≤) be a finite bounded ordered set with mappings γ̌ : G → O and
μ̌ : M → O. Then, a (νG, νM)-labelled line diagram D

ν
η(O) of the ordered set

O is isomorphic to a (νG, νM)-labelled line diagram D
ν
η̄(B(K)) of the concept

lattice B(K) if and only if, in D
ν
η(O),

1. each circle, having exactly one line segment downwards, is labelled
(from below) by at least one object name out of νG,

2. each circle, having exactly one line segment upwards, is labelled (from
above) by at least one attribute name out of νM ,

3. a circle labelled by an object name out of νG is linked up by an
ascending chain of line segments to a circle labelled by an attribute
name out of νM , or those labelled circles are identical, if and only
if the named object has the named attribute,

4. there exists an injection ζ : CB(K) → CO such that, for each circle c̄
in the diagram D

ν
η̄(B(K)), ζ(c̄) represents a minimal upper bound of

{γ̌g | g ∈ G with γg ≤ η̄−1c̄} which is also a maximal lower bound
of {μ̌m | m ∈ M with μm ≥ η̄−1c̄},

5. the number of all circles of D
ν
η(O) equals the number of all circles of

D
ν
η̄(B(K)),

6. the number of all line segments of D
ν
η(O) equals the number of all

line segments of D
ν
η̄(B(K)).
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Now, we test the “Basic Theorem on Labelled Line Diagrams of Finite Concept
Lattices” by examining the line diagram in Fig. 1. For checking the conditions
5 and 6, we need to know the number of elements and the number of covering
pairs of elements of the presented lattice. Applying P. Burmeister’s program
“ConImp” [Bu03] to the formal context in Fig. 1, we obtain that the lattice
has 15 elements and 23 covering pairs; since the line diagram has 15 circles
and 23 straight line segments between those circles, condition 5 and 6 are valid.
Conditions 1 and 2 are obviously true because the five circles directly above the
lowest circle are the only circles having exactly one line segment downwards and
being labelled by at least one object name of the presented context, and the six
circles labelled by an attribute name are the only circles having exactly one line
segment upwards. Condition 3 can be confirmed by a systematic comparison of
the crosses in the cross table with the pairs of object circle and attribute circle of
which the object circle is linked up to the attribute circle by an ascending chain
of line segments. Finally, condition 4 is checked by confirming for each circle in
the line diagram that it represents an element which is a minimal upper bound
of elements whose corresponding circles are labelled by an object name and is a
maximal lower bound of elements whose corresponding circles are labelled by an
attribute name. For our example, this checkup is positive. Thus, the line diagram
in Fig. 1 represents the concept lattice of the formal context in Fig. 1.

The readability of line diagrams of concept lattices becomes intricate when
the number of concept relationships increases so much that, because of multi-
farious intersections, the individual line segments cannot be clearly pursued. To
overcome this problem, nested line diagrams have been invented (see [Wi84])
which allow to draw readable line diagrams with even more than hunderd con-
cept circles. The basic idea of nested line diagrams is to partition a line diagram
in such a way that parallel line segments between two classes of the partition
can be replaced by one line segment by which those parallel line segments may
be still reconstructed. A representation of a concept lattice by a nested line
diagram can be deduced from a partition of the set of attributes of the under-
lying formal context. The basis for this is the following theorem (cf. [GW99],
p.77):

Theorem 1. (
∨

-Embedding into Direct Products of Concept Lattices)
Let (G, M, I) be a context and M = M1 ∪ M2. The map

(A, B) 
→ (((B ∩ M1)′, B ∩ M1), ((B ∩ M2)′, B ∩ M2))

is a
∨

-preserving order embedding of B(G, M, I) into the direct product of the
lattices B(G, M1, I ∩ G× M1) and B(G, M2, I ∩G × M2). The component maps

(A, B) 
→ ((B ∩ Mi)′, B ∩ Mi)

are surjective on B(G, Mi, I ∩ G × Mi).
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Let us exemplify the use of this theorem by the concept lattice presented in
Fig. 1. As partition classes we consider the attribute sets

M1 := {vocalic, sonorant, consonantal, obstruent}, M2 := {high, non−high}
together with the reduced object set Gr := {i, e, p, m, k}, for which the concept
lattice B(Gr, M, I ∩ Gr × M) is still isomorphic to B(G, M, I). Fig. 2 shows
a nested line diagram of the direct product of B(Gr, M1, I ∩ Gr × M1) and
B(Gr , M2, I ∩ Gr × M2). A common line diagram of the direct product can be

Fig. 2. Direct product of two concept lattices about sound patterns in English

obtained by replacing each line segment between two of the seven rhombuses
by four parallel line segments which join the corresponding circles of the two
rhombuses. Each rhombus represents a congruence class of the direct product
isomorphic to B(Gr, M2, I ∩Gr ×M2), and all those congruence classes together
form the elements of a quotient lattice isomorphic to B(Gr , M1, I ∩ Gr × M1).
Thus, the nested line diagram of the direct product shown in Fig. 2 can be derived
by first drawing a line diagram of B(Gr, M1, I ∩ Gr × M1) and then replacing
each of its circles by a copy of a line diagram of B(Gr, M2, I ∩ Gr × M2).

The black circles in the nested line diagram in Fig. 2 represent the concept lat-
tice of the original context (G, M, I) whose lattice order ≤ is just the restriction
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of the lattice order of the direct product. To emphasize such lattice representa-
tion, the non-blackened circles are often contracted to a point, respectively. If
in the lowest congruence class the lowest circle is black and all other circles are
not black, and if the lowest circle in all other circles is not black, respectively, it
is common to delete all non-blackened circles and all line segments in the lowest
congruence class and to delete the lowest circle with its adjacent line segments in
all other congruence classes (cf. the nested line diagram concerning handicapped
children in [Wi84]).

The idea of nested line diagrams has been extended in the 1990th to the con-
ception of TOSCANA-systems (see [VWW91], [SVW93], [KSVW94], [VW95]).
TOSCANA-systems allow to explore data represented by larger formal contexts
(G, M, I). Usually, the attribute set M of such a context is divided into a larger
number of “meaningful” subsets M1, . . . , Mn with M = M1 ∪ · · · ∪ Mn. The
concept lattice of each subcontext (G, Mk, I ∩ G × Mk) (k = 1, . . . , n) has to be
visualized by a suitable line diagram. A TOSCANA-system for such a family of
line diagrams enables the user to present the prepared line diagrams on a com-
puter screen and also nested line diagrams combining two, three ore more of the
prepared diagrams. When nestings of line diagrams become difficult to read it is
preferrable to restrict to an interesting congruence class and eventually to refine
this class by some further nesting. Such procedures makes possible to explore
more and more the data coded in (G, M, I). The description of actual software
for maintaining and activating TOSCANA-systems can be found in [BH05].

3 Representing and Processing Conceptual Knowledge

In [Wi06], 38 methods of Conceptual Knowledge Processing are presented and
classified under the twelve headings: 1. Conceptual Knowledge Representation,
2. Determination of Concepts and Contexts, 3. Conceptual Scaling, 4. Concep-
tual Classification, 5. Analysis of Concept Hierarchies, 6. Aggregation of Concept
Hierarchies, 7. Conceptual Identification, 8. Conceptual Knowledge Inferences,
9. Conceptual Knowledge Acquisition, 10. Conceptual Knowledge Retrieval, 11.
Conceptual Theory Building, 12. Contextual Logic. In [EW07], those classes
of methods are discussed with the focus on Conceptual Knowledge Representa-
tion, Conceptual Knowledge Inference, Conceptual Knowledge Acquisition, and
Conceptual Knowledge Communication. All the discussed methods rely basically
on lattice theory. In this section we concentrate on methods of representing
and processing conceptual knowledge starting from (quasi-)ordered sets as basic
structures.

The representation of knowledge by a formal context is often criticized with
the argument that the choice of objects and attributes of the context are too
restrictive, so that the given selection of objects and attributes have at least to
be justified. This critics has led to develop methods by which formal contexts
can be derived from more elementary structures which occur in human thought
earlier than concepts (see [Pi70], [SW86], [WW03]). Mathematically, such el-
ementary structures are the (quasi-)ordered sets which have been successfully
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used, especially, as the basic structures for representational measurement theory
(see [KLST71]).

A general method of turning an ordered set into a formal context is based
on the idea of convergence which allows to create formal objects and formal
attributes by converging structures. For instance, the ordered set (Q, ≤) of all
rational numbers gives rise to new numbers like π and e which are represented
by infinitely decending number sequences and infinitely ascending number se-
quences, respectively. In general, the idea of convergence can be substanciated
in an ordered set P := (P, ≤) by the notions of “filter” and “ideal” where a
filter of P is a non-empty subset F of P , for which a ∈ F and a ≤ b imply
b ∈ F and a, c ∈ F guarantees the existence of some d ∈ F with d ≤ a, c , and
an ideal of P is a non-empty subset I of P , for which a ∈ I and a ≥ b imply
b ∈ I and a, c ∈ I guarantees the existence of some d ∈ I with d ≥ a, c. Filters
are of decending nature and ideals are of ascending nature. This is the reason
why the filters of P are viewed as objects and the ideals of P are viewed as
attributes. The formal context derived from the ordered set P is then defined by
K(P ) := (F(P ), I(P ), Δ) where F(P ) is the set of all non-empty filters F of P
and I(P ) is the set of all non-empty ideals I of P with FΔI : ⇐⇒ F ∩ I �= ∅;
hence a filter as ‘object’ has an ideal as ‘attribute’ if and only if filter and ideal
have at least one element in common.

Important are the ideal-maximal filters F in F(C) for which an ideal I exists
in I(C) such that F is maximal in having the property F ∩ I = ∅; F is named
an I-maximal filter and, furthermore, if I is a maximal ideal with F ∩ I = ∅
the I is called an F -opposite. As dual notions we have filter-maximal ideals, F -
maximal ideals, and I-opposites. The set of all ideal-maximal filters is denoted by
F0(C) and the set of all filter-maximal ideals is denoted by I0(C). The following
theorem informs about meaningful structural properties of the concept lattice of
K(C) (cf. [Ur78], [Ha92], [Wi07b]):

Filter-Ideal-Theorem. The ordered set C is naturally embedded into the con-
cept lattice of the derived context K(C) by the map

ι : x 
→ ({F ∈ F(C) | x ∈ F}, {I ∈ I(C) | x ∈ I})

where ι(x ∧ y) = ι(x) ∧ ι(y) if x ∧ y exists in C and ι(x ∨ y) = ι(x) ∨ ι(y) if x ∨ y
exists in C. The set J(B(K(C)))(= γF0(C)) of all

∨
-irreducibles is

∨
-dense

and the set M(B(K(C)))(= μI0(C)) of all
∧

-irreducibles is
∧

-dense, i.e.,

B(K(C)) ∼= B(F0(C), I0(C), Δ).

For representing knowledge by a formal context derived from an ordered set, the
most important result of the Filter-Ideal-Theorem lies in the described reduction
of the general context K(C) to the reduced context (F0(C), I0(C), Δ) whose
concept lattice is still isomorphic to the concept lattice of K(C). How this general
piece of knowledge can be used to clarify human thought shall be demonstrated
by treating the question: Does the ordered set R := (R, ≤) of all real numbers
represent a one-dimensional continuum?
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Real numbers are used to represent time points, so that we can rephrase
the continuity question: Is the linear order of time points a one-dimensional
continuum? If we follow Aristotle, the answer is “no”. Aristotle understands
time and durations as one-dimensional continua, which means according to his
continuum definition that they “are unlimitedly divisible into smaller parts”
([We72], p.431). Therefore, for Aristotle, durations do not consist of time points,
but time points are only limits of durations. Aristotle’s conception of the time
and the space continuum yields in general that a continuum does not consists of
points, but has as parts only continua again whose nature is to be extensive. In
contrast to that, points are in principle of different nature: they are not extensive
and can only be understood as limits of extensives.

If we accept that the ordered set R := (R, ≤) of all real numbers does not
represent a one-dimensional continuum, we nevertheless can use the real numbers
for describing the structure of a continuum. Let C

R
:= (CR, ⊆) be the ordered

set of all real open intervals where CR consists of the open intervals

]r, s[:= {x ∈ R | r < x < s}

with r ∈ R ∪ {−∞} and s ∈ R ∪ {+∞}. In this ordered set, the convex hull
of the set-theoretic union of open intervals is the supremum and ]− ∞, +∞[ is
the greatest element. The ∧-irreducible elements form the dense chains C1 :=
{]− ∞, r[| r ∈ R} and C2 := {]r, +∞[| r ∈ R}; there exists an antiisomorphism
between C1 and C2 defined by ]− ∞, r[ 
→ ]r, +∞[. The pairs (]− ∞, r[, ]r, +∞[)
with r ∈ R are called the “cuts” of C

R
.

The number-theoretic description of a one-dimensional continuum structure
gives rise to a more universal order-theoretic definition of linear continuum
structures: In general, a linear continuum structure is defined as an ordered
set C := (C, ≤) satisfying the following conditions:

(1) C is a
∨

-semilattice with greatest element 1 and no smallest element;
(2) the ∧-irreducible elements of C form two disjoint dense chains C1 and

C2 without greatest and smallest element, where c1 ∨ c2 = 1 for all
c1 ∈ C1 and c2 ∈ C2;

(3) c1∧ c2 = d1∧ d2 implies c1 = d1 and c2 = d2 for all c1, d1 ∈ C1 and
c2, d2 ∈ C2;

(4) there exists an antiisomorphism c� 
→ c� from C1 onto C2 such that
C = {1} ∪ C1 ∪ C2 ∪ {c� ∧ d | c� ∈ C1 and d ∈ C2 with c�< d}.

The elements of C are called (linear) continua, and the pairs (c�, c�) of corre-
sponding elements c� ∈ C1 and c� ∈ C2 are called the cuts of C.

The ordered set C
R

is obviously a linear continuum structure which, according
to the Filter-Ideal-Theorem, can be embedded by the mapping ι into the concept
lattice B(K(C

R
)). This can be illustrated by a linear ordered set (Ř, �) extending

(R, ≤). (Ř, �) is defined by

Ř := (R × {−1, +1}) ∪ {(−∞, +1), (+∞, −1)} and
(r, u) � (s, v) : ⇐⇒ r < s or (r = s and u ≤ v).
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Fig. 3. A linear continuum as an ordered set

The linear ordered set (Ř \ {(−∞, +1), (+∞, −1)}, �) clearly evolves out of
(R, ≤) by dividing each real number r into the two elements (r, −1)� (r, +1). Ř

is bijectively mapped onto the set of all atoms of B(K(C
R
)) by the mapping α

with

α(−∞, +1) := γ(C1 ∪ {]− ∞, +∞[}),
α(r, −1) := γ{X ∈ C | X ⊇ O ∩ ]− ∞, r[ for some O ∈ C2 with ]r, +∞[⊂ O},
α(r, +1) := γ{Y ∈ C | Y ⊇ O ∩ ]r, +∞[ for some O ∈ C1 with ]− ∞, r[⊂ O},
α(+∞, −1) := γ(C2 ∪ {]− ∞, +∞[}),

because

C1 ∪ {]− ∞, +∞[},
{X ∈ C | X ⊇ O ∩ ]− ∞, r[ for some O ∈ C2 with ]r, +∞[⊂ O},
{Y ∈ C | Y ⊇ O ∩ ]r, +∞[ for some O ∈ C1 with ]− ∞, r[⊂ O},
C2 ∪ {]− ∞, +∞[},

are exactly the maximal filters of the ordered set C
R

. Simplifying conventions
are −∞ := α(−∞, +1), r− := α(r, −1), r+ := α(r, +1), and +∞ := α(+∞, −1).
The linear order of (Ř, ≤) is transferred onto the set of all atoms of B(K(C

R
))

by
α(r, u) � α(s, v) : ⇐⇒ (r, u) � (s, v);

according to this order �, −∞ is the smallest atom, +∞ is the greatest atom,
and r− � r+ � s− � s+ if r < s in R. The continua of the real linear contin-
uum structure C

R
are represented in the concept lattice by the formal concepts

ι(]r, s[), respectively. Since ι(]r, s[) = (r+) ∨ (s−) the atoms below ι(]r, s[) are
exactly the atoms a with r+ � a � s−; therefore it is meaningful to say that the
point concepts r+ and s− are the limits of the continuum concept ι(]r, s[). The
cuts of the real linear continuum structure are represented in the concept lattice
by the pairs (r−, r+); in this conceptual connection r− and r+ are standing for
the two irreducible subpoints of the reducible point described by the real number
r which is represented by the formal concept (r−) ∨ (r+).

For a linear continuum structure C in general, such structure analysis can be
performed using the next theorem (cf. [Wi07b]) in which the following notions
are presumed: In the ordered set C, F1 := C1 ∪ {1} and F2 := C2 ∪ {1} are the
‘extreme’ ideal-maximal filters and I1 := {x ∈ C | x ≤ c for some c ∈ C1} and
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I2 := {x ∈ C | x ≤ c for some c ∈ C2} are the ‘extreme’ filter-maximal ideals.
The cuts (c�, c�) of C supply the other I-maximal filters of C by

Fc� := {x ∈ C | x ≥ c�∧ d for some d ∈ C2 with c�< d},
Fc � := {y ∈ C | y ≥ c�∧ d for some d ∈ C1 with c�< d},

and the other F -maximal ideals of C by

I(c�) := {x ∈ C | x < c�} and I(c �] := {y ∈ C | y ≤ c�},
I(c�] := {x ∈ C | x ≤ c�} and I(c �) := {y ∈ C | y < c�}.

Theorem 2. In the concept lattice of the formal context K(C) := (F(C), I(C),
Δ) of a linear continuum structure C,

(1) ι(1)(= γF1 ∨ γF2) is the greatest element of K(C),
(2) γF0(C) is the set of all atoms and is the disjoint union of the sets

A1 := {γF1} ∪ {γFc � | c� ∈ C2} and A2 := {γF2} ∪ {γFc� | c� ∈ C1},
(3) μI0(C)(= {γF1 ∨ γF | F ∈ A1} ∪ {γF2 ∨ γF | F ∈ A2}) is the set of all

∧-irreducible elements and is the disjoint union of the convex chains
[γF1, ι(1)[ and [γF2, ι(1)[,

(4) for each cut (c�, c�), we have γF1 ∨ γFc� = μI(c�] and γF2 ∨ γFc � = μI(c �],
μI(c�] is a lower neighbour of μI(c�] ∨ γFc � and an upper neighbour of μI(c�),
μI(c �] is a lower neighbour of μI(c �] ∨ γFc� and an upper neighbour of μI(c �),

(5) for x = d� ∧ c�, we have ι(x) := ({F ∈ F(C) | x ∈ F}, {I ∈ I(C) | x ∈ I})
= γFc � ∨ γFd� = μI(d�] ∧ μI(c �].

The schema of a concept lattice diagram of a general linear continuum structure
shown in Fig. 4 stands for the attempt to make phenomena and their related
structures conceptually understandable. In the case of linear continua, this has
led to an explanation of the distinction between the phenomenological nature of
linear continua (represented by ordered sets) and the conceptual nature of points
(represented by formal concepts). How the two levels of explanations can work
together, this can be demonstrated by the following example: The duration of a
journey by train may be imagined as a linear continuum, but if one asks about
the departure time and the arrival time of that journey then one asks about time
points being the limits of the journey continuum.
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Fig. 4. The schema of a concept lattice diagram of a linear continuum structure



Formal Concept Analysis as Applied Lattice Theory 55

4 Measurement of Conceptual Knowledge Structures

In the preceding sections, the discussed Conceptual Knowledge Structures are
all qualitative in nature. But, it is also valuable to use Formal Concept Analysis
for examining Conceptual Knowledge Structures which are quantitative in na-
ture. This has already been done by extending Formal Concept Analysis to the
so-called Algebraic Concept Analysis in which the formal contexts are also alge-
braically structured (see [VW94]). More precisely, an algebraic context (A, B, J)
is a formal context in which A := (A, F ) is an algebra with A as underlying
set and F as family of operations on A having the property that E is an extent
of (A, B, J) if and only if E is the underlying set of a subalgebra of (A, B, J).
Dually, the triple (A,B, J) is said to be a dual algebraic context if (B, A, J−1) is
an algebraic context for the algebra B := (B, G). Finally, (A,B, J) is called a
bialgebraic context if (A, B, J) is an algebraic context and if (A,B, J) is a dual
algebraic context.

Prototypes of bialgebraic contexts are the contexts (V,V∗, ⊥r) where V is
a finite-dimensional vector space over a field K, V∗ is its dual space (i.e., the
vector space of all linear maps from V into K with pointwise operations), and
⊥r is defined by v ⊥r ϕ : ⇐⇒ ϕ(v) = r ∈ K for all v ∈ V and ϕ ∈ V∗. In case
r = 0, the extents of the bialgebraic context are exactly the linear subspaces
of V and the intents are exactly the linear subspaces of V∗. In case r �= 0,
the extents of the bialgebraic context are exactly V and the affine subspaces of
V not containing 0 and the intents are exactly V ∗ and the affine subspaces of
V∗ not containing 0; to understand (V,V∗, ⊥r) also in this case as bialgebraic
context, V resp. V∗ have to be considered as partial algebras which have the
linear combinations r1x1 + r2x2 + · · · + rkxk as partial operations applied only
to those k-tuples (v1, v2, . . . , vk) resp. (ϕ1, ϕ2, . . . , ϕk) with

0 �∈ v1+<v2 − v1, . . . , vk − v1 > resp. ϕ0 �∈ ϕ1+<ϕ2 − ϕ1, . . . , ϕk − ϕ1 >

where ϕ0(x) := 0 ∈ K for all x ∈ V.

Theorem 3. (Inversion of Affine Subspaces)[Wl91] The derivation oper-
ators of the bialgebraic context (V,V∗, ⊥r) with r �= 0 yield mutually inverse
antiisomorhisms between the lattices consisting of the total space of V resp. V ∗

and of all affine subspaces not containing zero; in particular, if V = R
n = V∗,

v ⊥r w :⇔ v · w = r, and r > 0, the derivation operators yield the well-known
inversion in the hypersphere of radius

√
r and center 0 in the euclidian space R

n.

The preceding theorem shows how methods of Formal Concept Analysis can be
used to clear up the inversion of affine subspaces conceptually. The appearing
connection between Geometry and Formal Concept Analysis shall be made more
explicit by explaining the case of dimension two: the inversion in a circle, the
construction of which is sketched in Fig.5 (cf. [Wi05], p.14ff.):
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Fig. 5. Inversion in a circle

Geometrically, a point outside the circle is mapped by the inversion onto the line
through the two points of contact of the two tangents through the outside point,
respectively; for example, p1 is mapped to l1 and p2 is mapped to l2. By the
inverse construction, each line which meets the circle in two points, but does not
meet the center of the circle, is mapped to the intersection point of the tangents
through the two common points of line and circle; for example, l1 is mapped to p1

and l2 is mapped to p2. Points in the circle (except the center) and lines outside
the circle interchange by the inversion as, for example, the point q and the line
m in Fig.5, and a point on the circle interchanges with the tangent through that
point. Using the set R of all real numbers, an analogous algebraic representation
of the (graphic) plane by R

2 yields a very economic conceptualization of the
inversion in a circle: For the circle with radius

√
r, this conceptualization is

based on the formal context (R2, R2, ⊥r) with (a, b) ⊥r (c, d) :⇔ a · c + b · d = r.
For each point (u, v) ∈ R

2, the derivation {(u, v)}⊥r is a line (and conversely).
It follows that the derivations of the formal context (R2, R2, ⊥r) represent the
inversions in the circle with center (0, 0) and radius

√
r.

Further research on Algebraic Concept Analysis has been performed via suit-
ably chosen formal contexts for ordered vector spaces [Wl99], finite abelian groups
[Vo95],[Gr99], modules [KV96], and algebraic geometry [Be99],[Be05],[Be07].
General investigations of bialgebraic contexts in which both context sets carry
an algebraic structure are presented in [Vo94].

That algebra serves humans with a language for operational descriptions be-
comes particularly apparent in geometry. Since Graeco-Roman times, algebra
plays a significant role in geometric measurement which is aiming at the support
of human thought and action by making realities graphic, intelligible, and work-
able (cf. [WW03]). Geometric measurement is to a large extent prototypical for
mathematically representing realities which is indicated by the comprehensive
theory of representational measurement presented in the three volumes “Foun-
dations of measurement” [KLST71].

The relational structures of measurement theory are idealized models of em-
pirical relationships. They are usually derived from empirical data wherefore data
tables are the most important interfaces for abstracting realities to a mathemat-
ical theory of measurement. Hence a suitable mathematization of data tables - as
developed in Formal Concept Analysis [GW99] and presented in the following de-
finition - may substantially contribute to representational measurement theory.

A (complete) many-valued context has been defined as a set structure
(G, M, W, I) where G, M , and W are sets and I ⊆ G × M × W such that
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(g, m, v) ∈ I and (g, m, w) ∈ I imply v = w; the elements of G, M , and W are
called objects, attributes, and attribute values, respectively. An ordinal context
has been defined as a set structure (G, M, (Wm, ≥m)m∈M , I) for which ≥m is a
(partial) order on Wm for all m ∈ M and (G, M,

⋃̇
m∈MWm, I) is a many-valued

context with (g, m, w) ∈ I ⇒ w ∈ Wm.
If ordinal contexts are considered as relational structures for geometric mea-

surement, a basic task is to investigate representations of ordinal contexts by
real vector spaces. An elementary type of such representations is given by the
following definition [Wl00]: A finite ordinal context (G, M, (Wm, ≥m)m∈M , I)
with M = {m0, m1, . . . , mn} is linearly representable in an n-dimensional real
vector space if there are mappings fi : Wi → R (i = 1, . . . , n) which satisfy, for
s = 1, . . . , n and g, h ∈ G, the following implications:

ms(g) >ms ms(h) ⇒ fs(ms(g)) > fs(ms(h)),
m0(g) >m0 m0(h) ⇒

∑n
i=1 fi(mi(g)) >

∑n
i=1 fi(mi(h)),

m0(g) = m0(h) ⇒
∑n

i=1 fi(mi(g)) =
∑n

i=1 fi(mi(h)).

By using Scott’s representation theorem of finite ordinal structures [Sc64],
the following characterization of finite ordinal contexts which are linearly repre-
sentable in real vector spaces has been proven [Wl00]:

Theorem 4. A finite ordinal context (G, M, (Wm, ≥m)m∈M , I) with M = {m0,
m1, . . . , mn} is linearly representable in an n-dimensional real vector space if
and only if the following condition holds for every k ∈ N, for all sequences
g1, . . . , gk ∈ G, h1, . . . , hk ∈ G with m0(gj) ≥m0 m0(hj) (j = 1, . . . , k), and for
all permutations σ1, . . . , σn on {1, . . . , k} :

If mi(hσi(j)) ≥mi mi(gj) for j = 1, . . . , k and i = 1, . . . , n, then
m0(gj) = m0(hj) and mi(gj) = mi(hσi(j)) for j = 1, . . . , k and i =
1, . . . , n.

Although Theorem 4 is a quite elegant representation theorem, it almost never
can be substantially applied in practice. A main reason is that, as a rule, data
in practice tend to be not densely connected enough. Usually, the most present
relationships in data are of ordinal nature. Therefore it is advisable to start with
a development of geometric measurement based on ordinal data. In the first step
of mathematization ordinal data are modelled by ordinal contexts as defined
above. For preparing the second step we define the “ordinal space” of an ordinal
context:

Let K := (G, M, (Wm, ≥m)m∈M , I) be an ordinal context. For each attribute-
value-pair (m, w) ∈ M × Wm we define the object set (m, w)≥m := {g ∈ G |
m(g) ≥m w} and (m, w)≤m := {g ∈ G | m(g) ≤m w}; if m(g) = w, we also write
[g)m for (m, w)≥m and (g]m for (m, w)≤m . The set structure Γ (K) := (G, H(K))
with H(K) := {[g)m | g ∈ G, m ∈ M} ∪ {(g]m | g ∈ G, m ∈ M} is called the
ordinal space of the ordinal context K and the subsets in H(K) are said to be
the generating subspaces of Γ (K).

The third step in the development of geometric measurement changes from
the synthetic to the analytic view where the generating subspaces are desrcibed
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by linear inequalities. In general, finite-dimensional ordered vector spaces yield
the analytic description of ordinal contexts and their ordinal spaces as follows
(cf. [Wl99]):

Let V be a finite-dimensional vector space over a (partially) ordered field
(K, ≤) and let V ∗ be its dual space. Then the many-valued context

K(V ) := (V, V ∗, (K, ≤), E) with (v, ϕ, k) ∈ E : ⇐⇒ ϕ(v) = k

is called the ordered bilinear context of V . This context may also be considered
as an ordinal context, the ordinal space of which is given by (V, {{v ∈ V | ϕ(v) ≤
k} | ϕ ∈ V ∗ and k ∈ K}).

As Theorem 4 has already shown, representations of ordinal contexts into
ordered vector spaces (over the reals) require strong assumptions. Therefore,
to cover a wider spectrum of empirical situations, we offer a more general
approach of geometric measurement by weaker algebraic structures. For this,
further notions concerning ordinal spaces are needed (cf. [WW03]): Let K :=
(G, M, (Wm, ≥m)m∈M , I) be an ordinal context. A subspace of the ordinal space
Γ (K) is an arbitrary intersection of generating subspaces of Γ (K); in particular,
G itself is a subspace. For each m ∈ M , the equivalence relation Θm on G is
defined by its equivalence classes [g]m := {h ∈ G | m(g) = m(h)} (g ∈ G), which
are all subspaces because [g]m = [g)m ∩ (g]m; furthermore, Δ :=

⋂
m∈M Θm. K

and Γ (K) are called clarified if Δ is the identity on G.
The basic axioms for our approach are given by the following antiordinal de-

pendences between many-valued attributes m0, m1, . . . , mn in an ordinal context
K := (G, M, (Wm, ≥m)m∈M , I) (i = 0, 1, . . . , n):

(Ai) ∀g, h ∈ G (∀j ∈ {0, 1, . . . , n} \ {i} : (g]mj ⊆ (h]mj )
=⇒ (h]mi ⊆ (g]mi .

In addition, for the subspaces [g]ij :=
⋂n

k=0
i�=k �=j

[g]mk
(i, j = 0, 1, . . . , n with i �= j),

we consider the following solvability conditions:

(Pij) ∀g, h ∈ G : [g]ij ∩ [h]mi �= ∅.

Since the solvability conditions are essential for coordinatizing ordinal spaces,
the following embedding theorem (cf. [WW93], [WW96]) yields the important
step from empirical models to synthetic geometrical models:

Theorem 5. (Embedding Theorem) The ordinal space Γ (K) of a clarified
ordinal context K with the attribute set M = {m0, m1, . . . , mn} satisfying (Ai)
(i = 0, 1, . . . , n) can always be embedded into the ordinal space Γ (K̂) of a clarified
ordinal context K̂ with the same attribute set so that Γ (K̂) satisfies (Ai) and (Pij)
(i, j = 0, 1, . . . , n with i �= j).

As a by-product of the Embedding Theorem, we obtain that the solvability con-
ditions cannot be rejected by finite data in the class of ordinal spaces with n+1
generating subspaces satisfying the antiordinal dependency axioms. Hence the
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(Pij) are only technical conditions which can be added without destroying con-
nections to the empirical models. The resulting spaces can now be coordinatized
by ordered n-loops defined as follows (cf. [WW96]):

An ordered n-loop is an ordered algebra L := (L, f, 0, ≤) for which f is an
order-preserving n-ary operation on the ordered set (L, ≤) uniquely solvable in
each of its components always respecting the order and with 0 as neutral ele-
ment. For each ordered n-loop L, there is a corresponding clarified ordinal con-
text KL := (Ln, {m0, m1, . . . , mn}, (L, ≤i)i∈{1,...,n}, IL) with m0 := f , ≤0:=≥
and, for i = 1, . . . , n, mi(x1, . . . , xn) := xi and ≤i:=≤. The ordinal space of KL

is also denoted by Γ (L, f, ≤) to emphasize the coordinate structure (L, f, 0, ≤).
On the set Ln, the following quasiorders are considered:

(x1, . . . , xn) <∼i (y1, . . . , yn) : ⇐⇒ xi ≤ yi for i = 1, . . . , n,
(x1, . . . , xn) <∼0 (y1, . . . , yn) : ⇐⇒ f(y1, . . . , yn) ≤ f(x1, . . . , xn).

Theorem 6. (Coordinatization Theorem) The ordinal space Γ (K̂) of a clar-
ified ordinal context K̂ with the attribute set M = {m0, m1, . . . , mn} satisfying
(Ai) and (Pij) (i, j = 0, 1, . . . , n with i �= j) is isomorphic to the ordinal space
Γ (L, f, ≤) of a suitable ordered n-loop (L, f, 0, ≤).

The Emdedding Theorem and the Coordinatization Theorem together yield a
representation of empirical models into algebraic models. Those representations
can be explicitly described which give rise to a general representation theorem
clarifying the basic role of the antiordinal dependency axioms (cf. [WW95]):
Let K be a clarified ordinal context with the object set G and the attribute
set M = {m0, m1, . . . , mn}. A representation map of its ordinal space Γ (K) :=
(G, {[g)m | g ∈ G, m ∈ M} ∪ {(g]m | g ∈ G, m ∈ M}) into the ordinal space
Γ (L, f, ≤) of an ordered n-loop (L, f, 0, ≤) is defined to be an (injective) mapping
λ : G → Ln with (g]mi ⊆ (h]mi ⇐⇒ λ(g) ≤i λ(h) for all g, h ∈ G and
i ∈ {0, 1, . . . , n}.

Theorem 7. (General Representation Theorem) Fortheordinal spaceΓ (K)
of a clarified ordinal context K with the attribute set M = {m0, m1, . . . , mn}, there
exists a representationmap from Γ (K) into the ordinal space Γ (L, f, ≤) of a suitable
ordered n-loop (L, f, 0, ≤) if and only if Γ (K) satisfies the antiordinal dependency
axioms (Ai) for i = 0, 1, . . . , n.

The question remains how unique are those representation maps? For answering
this question we need the following definition (cf. [WW95]): Let L := (L, f, 0, ≤
) and M := (M, g, 0, ≤) be ordered n-loops. (ι0, ι1, . . . , ιn) is called a partial
isotopy from L into M if, for i = 0, 1, . . . , n, ιi is an isomorphism from (dom(ιi), ≤
) onto (im(ιi), ≤) with dom(ιi) ⊆ L and im(ιi) ⊆ M such that ι0f(x1, . . . , xn) =
g(ι1x1, . . . , ιnxn) for all (f(x1, . . . , xn), x1, . . . , xn) ∈ dom(ι0) × dom(ι1) × · · · ×
dom(ιn). For an n-tuple (ι1, . . . , ιn) of (partial) maps we define (ι1 × · · · × ιn) :
dom(ι1)×· · ·×dom(ιn) −→ im(ι1)×· · ·×im(ιn) by (ι1 ×· · ·×ιn)(x1, . . . , xn) :=
(ι1x1, . . . , ιnxn).
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Theorem 8. (General Uniqueness Theorem) Let K be a clarified ordinal
context with the object set G and the attribute set M = {m0, m1, . . . , mn} and
let Γ (K) be its ordinal space; further, let L := (L, f, 0, ≤) and M := (M, g, 0, ≤)
be ordered n-loops, let λ be a representation map from Γ (K) into Γ (L, f, ≤),
and let μ be a mapping from G into Mn. Then μ is a representation map from
Γ (K) into Γ (M, g, ≤) if and only if there exists a partial isotopy (ι0, ι1, . . . , ιn)
from L into M with im(f ◦ λ) ⊆ dom(ι0), im(λ) ⊆ dom(ι1 × · · · × ιn) and
μ = (ι1 × · · · × ιn) ◦ λ.

The Coordinatization Theorem can be specialized to characterize those ordinal
spaces which have a representation by ordered Abelian groups and ordered vector
spaces (over the reals), respectively (see [Wl95],[WW96]). Of course, as richer the
algebraic structures are as better will be the mathematical support for analyzing
the empirical models. Therefore, further representation and uniqueness theorems
for relevant types of empirical models are desirable, in particular, to grasp even
richer dependency structures (cf. [Wl96], [Wl97]).

Although the embeddings of ordinal contexts into bilinear contexts over the
reals are not finitely axiomatizable in first order logic [Wl00], the General Rep-
resentation Theorem can still be used for concrete data which shall finally be
demonstrated by the example context presented in Fig.6 (cf. [Wi92]). The data

Receptor Violet Blue Blue Blue-Green
430 458 485 498

1 147 153 89 57
2 153 154 110 75
3 145 152 125 100
4 99 101 122 140
5 46 85 103 127
6 73 78 85 121
7 14 2 46 52
8 44 65 77 73
9 87 59 58 52

10 60 27 23 24
11 0 0 40 39

Fig. 6. Colour absorption of 11 receptors in a goldfish retina

context in this figure describes the amounts of absorption of four colour stimuli
by eleven receptors in a goldfish retina (cf. [SF68]). The data context is viewed
as an ordinal context Kcol whose integer values are ordered in the natural way.
For representing such an ordinal context in a real vector space, by the General
Representation Theorem, we have to determine the antiordinal attribute depen-
dencies of the ordinal context (cf. [WW96]). In [GW86], it is shown that the
ordinal dependencies of an ordinal context K := (G, M, (Wm, ≤m)m∈M , I) are
exactly the attribute implications of the formal context Ko := (G2, M, Io) with
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Fig. 7. Concept lattice of K̃o

(g, h)Iom : ⇐⇒ m(g) ≤m m(h). Since an ordinal dependency m1, . . . , mn
o−→ m

is defined by
(mi(g) ≤mi mi(h) for all i = 1, . . . , n) =⇒ m(g) ≤m m(h),

for checking the conditions (Ai), it helps to extend K to the ordinal context K̃ :=
(G, M ∪̇Md, (Wn, ≤n)n∈M∪̇Md , I∪̇Id) where Md := {md | m ∈ M}, Wmd :=
Wm, v ≤md

w : ⇐⇒ w ≤m v, and Id := {(g, md, w) | (g, m, w) ∈ I}. Then we
obtain the dependencies described by the (Ai) as implications of K̃o which can
be read from the line diagram of the concept lattice of K̃o. For our example, this
line diagram is depicted in Fig.7 (cf. [WW96] and [Wi04], p.490).

It shows that the conditions (Ai) are satisfied by the ordinal contexts corre-
sponding to the attribute sets

{V iolet 430, Blue 458 dual, Blue − Green 498} and
{V iolet 430, Blue 485 dual, Blue − Green 498}.

Therefore, we have two ordered-2-loop-representations which can even be simul-
tanously represented in the Euclidean plane as shown in Fig.8 (cf. [Wi92]). An
interesting outcome is that, in the figure, the four colours are “ordered” accord-
ing to the colour circle.

5 Further Relationships

The main source of further relationships between Formal Concept Analysis and
abstract Lattice Theory is the monograph “Formal Concept Analysis: Mathe-
matical Foundations” [GW99]. Here we primarily want to point out relationships
concerning structural properties, connections, methods, and principles.
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Fig. 8. Representation of the data of Fig.6 in the Euclidean plane

One of the most basic principles is the duality principle for lattices; it is based
on the observation that the inverse relation ≥ of an order relation ≤ is an order
relation again. A representation of the inverse relation ≥, also called the dual
relation of ≤, can be obtained by turning a line diagram of ≤ upside-down. The
duality principle for lattices says that the identity ι on a lattice (L, ≤) is always
an anti-isomorphism from (L, ≤) onto its dual (L, ≤)d := (L, ≥), i.e., ι(x ∧ y) =
ι(x)∨ι(y) and ι(x∨y) = ι(x)∧ι(y). The duality principle for lattices gives rise to
the duality principle for concept lattices which can be fomulated as follows: For
a formal context (G, M, I), the derived formal context (M, G, I−1) is a formal
context for which the mapping (B, A) 
→ (A, B) is an anti-isomorphism from
B(M, G, I−1) onto B(G, M, I) (cf. [GW99], p.22). In applications, an elementary
use of the duality principle is based on viewing the formal objects as the formal
attributes and vice versa. By the duality principle, we obtain the dual version
of Theorem 1 yielding the construction of

∧
-Embedding into Direct Products of

Concept Lattices.
One of the most used methods of Formal Concept Analysis in practice is “Con-

ceptual Scaling” [GW89] which is derived from the lattice-theoretic construction
of subdirect products of

∨
-semilattices. Conceptual Scaling has been invented for

turning (in the plain case) a (complete) many-valued context (G, M, W, I) into
a formal context (G, N, J) with N :=

⋃
m∈M{m} × Mm and g ∈ J(m, n) ⇔

m(g) = w and wImn, where Mm and Im are taken from a meaningfully cho-
sen scale context Sm := (Gm, Mm, Im) with m ∈ M and m(G) ⊆ Gm. How



Formal Concept Analysis as Applied Lattice Theory 63

this is further explained and exemplified by a many-valued context about drive
concepts for motor cars can be found in [GW99], p.37ff.

Basic for Formal Concept Analysis in practice is that the formal extents and
the formal intents form closure systems, respectively. In general, closure systems
are complete lattices with respect to set-incusion. For applications, the closure
system of all intents of a formal context (G, M, I) is of great interest because it
consists of all those sets of attributes which are closed under attribute implica-
tions of the form A → B with A, B ⊆ M . Formally, a subset T of attributes is
closed if and only if, for all attribute implications A → B, A ⊆ T implies B ⊆ T
(cf. [GW99], p.69ff.). For many applications it is desirable to know principally
all attribute implications of the considered data context. This problem has been
solved by introducing the so-called pseudo-intents which were used as premises
of a canonical basis, the so-called Duquenne-Guigues-Basis [GD86], while the
intent closures of the pseudo-intents became the corresponding conclusions. The
idea to introduce the pseudo-intents grew out of a lattice-theoretic analysis of
the closure system of all intents as

∧
-subsemilattice within the Boolean lattice

of all subsets of the underlying attribute set. How powerful the application of the
Duquenne-Guigues-Basis is can already be seen by the attribute exploration of
nine properties of binary relations (used for ordinal measurement) as elaborated
in [GW99], p.85ff.

The rich structure theory of lattices gave rise to an also rich development of
construction and decomposision methods for Formal Concept Analysis. A sys-
tematic examination of different parts and quotients of concept lattices has
been performed which led to different types of decompositions such as subdirect
decompositions, Atlas-decompositions, substitution decompositions, and tenso-
rial decompositions, but also to several types of constructions such as subdi-
rect product constructions, gluings, local doublings, and tensorial constructions
(cf. [GW99], chap. 3 - 5). How such structural tools may be activated shall
be sketched by the method of paired comparisons which is frequently used to
analyse dominance between objects. Here we restrict to paired comparison data
consisting of preference judgments on a given set A of alternatives, which can
be represented by a finite formal context (A, A, I) with either (a1, a2) ∈ I or
(a2, a1) ∈ I for all pairs of alternatives a1 �= a2; (a1, a2) ∈ I means that alter-
native a2 is preferred to alternative a1 (cf. [LW88]). For conceptually analysing
the represented data, substitution decompositions of the context (A, A, I) and
its concept lattice are useful. Two of such decompositions of (A, A, I) lead to the
same number of indecomposable subcontexts which are pairwise isomorphic. The
line diagrams of the concept lattices of those subcontexts may be used to draw
a well readable line diagram of the concept lattice of (A, A, I) by a computer
which makes the conceptual structure of the paired comparision data graphically
transparent (cf. [LW87], [LW88]).

Finally, it shall be emphasized that it is important for applications to identify
meaningful properties of concept lattices. Lattice Theory serves Formal Con-
cept Analysis with such properties. In [GW99], chap. 6, a number of interesting
properties are discussed, namely distributivity, modularity and semimodularity,
semidistributivity and local distributivity. A different type of properties is given
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by notions of dimension. For formal contexts (G, M, I), the notion of Ferrers
dimension is of particular interest. A subset F of G × M is called a Ferrers
relation of (G, M, I) if the concept lattice B(G, M, I) is a chain; F is a Ferrers
relation if and only if (g, m) ∈ F and (h, n) ∈ F always imply (g, n) ∈ F or
(h, m) ∈ F . The Ferrers dimension of a formal context (G, M, I) is the smallest
number of Ferrers relations between G and M the intersection of which equals
the relation I. For applications, the following dimension theorem is useful (cf.
[Wi89], p.36ff.): The Ferrers dimension of a formal context (G, M, I) is equal
to the order dimension of B(G, M, I), i.e. the smallest number of chains which
admit an order-embedding of B(G, M, I) into their direct product. This theorem
can be applied, for instance, to the task of establishing well readable line dia-
grams of concept lattices which ar essential for reaching valuble interpretations
of empirical data represented by formal contexts (cf. [Wi04], p.469ff.).

References

[BM70] Barbut, M., Monjardet, B.: Ordre et Classification. Algébre et Combina-
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Abstract. The paper presents additional results on factorization by
similarity of fuzzy concept lattices. A fuzzy concept lattice is a hierar-
chically ordered collection of clusters extracted from tabular data. The
basic idea of factorization by similarity is to have, instead of a possibly
large original fuzzy concept lattice, its factor lattice. The factor lattice
contains less clusters than the original concept lattice but, at the same
time, represents a reasonable approximation of the original concept lat-
tice and provides us with a granular view on the original concept lattice.
The factor lattice results by factorization of the original fuzzy concept
lattice by a similarity relation. The similarity relation is specified by a
user by means of a single parameter, called a similarity threshold. Smaller
similarity thresholds lead to smaller factor lattices, i.e. to more compre-
hensible but less accurate approximations of the original concept lattice.
Therefore, factorization by similarity provides a trade-off between com-
prehensibility and precision. We first recall the notion of factorization.
Second, we present a way to compute the factor lattice of a fuzzy con-
cept lattice directly from input data, i.e. without the need to compute
the possibly large original concept lattice.

1 Introduction and Motivation

Formal concept analysis (FCA) is a method of exploratory data analysis which
aims at extracting a hierarchical structure of clusters from tabular data de-
scribing objects and their attributes. The history of FCA goes back to Wille’s
paper [19], foundations, algorithms, and a survey of applications can be found
in [11,12].

The clusters 〈A, B〉, called formal concepts, consist of a collection A (con-
cept extent) of objects and a collection B (concept intent) of attributes which
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are maximal with respect to the property that each object from A has every
attribute from B. The extent-intent definition of formal concepts goes back to
traditional Port-Royal logic. Alternatively, formal concepts can be thought of
as maximal rectangles contained in object-attribute data table. Formal con-
cepts can be partially ordered by a natural subconcept-superconcept relation
(narrower clusters are under larger ones). The resulting partially ordered set of
concepts forms a complete lattice, called a concept lattice, and can be visualized
by a labelled Hasse diagram. In the basic setting, the attributes are binary, i.e.
each table entry contains either 0 or 1. FCA was extended to data tables with
fuzzy attributes, i.e. tables with entries containing degrees to which a particular
attribute applies to a particular object, see e.g. [4,5,18].

A direct user comprehension and interpretation of the partially ordered set
of clusters may be difficult due to a possibly large number of clusters extracted
from a data table. A way to go is to consider, instead of the whole concept lat-
tice, its suitable factor lattice which can be considered a granular version of the
original concept lattice: its elements are classes of clusters and the factor lattice
is smaller. A method of factorization by a so-called compatible reflexive and
symmetric relation (a tolerance) on the set of clusters was described in [12]. In-
terpreting the tolerance relation as similarity on clusters/concepts, the elements
of the factor lattice are classes of pairwise similar clusters. The specification of
the tolerance relation is, however, left to the user. In [2], a method of parameter-
ized factorization of concept lattices computed from data with fuzzy attributes
was presented: the tolerance relation is induced by a threshold (parameter of fac-
torization) specified by a user. Using a suitable measure of similarity degree of
clusters/concepts (see later), the method does the following. Given a threshold a
(e.g. a number from [0, 1]), the elements of the factor lattice are similarity blocks
determined by a, i.e. maximal collections of formal concepts which are pairwise
similar to degree at least a. The smaller a, the smaller the factor lattice, i.e. the
larger the reduction. For a user, the factor lattice provides a granular view on
the original concept lattice, where the granules are the similarity blocks.

In order to compute the factor lattice directly by definition, we have to com-
pute the whole concept lattice (this can be done by an algorithm with a polyno-
mial time delay, see [3]) and then compute all the similarity blocks, i.e. elements
of the factor lattice (again, this can be accomplished by an algorithm with poly-
nomial time delay).

In this paper, we present a way to compute the factor lattice directly from
data. The resulting algorithm is significantly faster than computing first the
whole concept lattice and then computing the similarity blocks. In addition to
that, the smaller the similarity threshold, the faster the computation of the factor
lattice. This feature corresponds to a rule “the more tolerance to imprecision, the
faster the result” which is characteristic for human categorization. The method
presented can be seen as an alternative to a method of fast factorization of
concept lattices by similarity presented in [6].

The paper is organized as follows. Section 2 presents preliminaries on fuzzy
sets and formal concept analysis of data with fuzzy attributes. In Section 3, we



70 R. Belohlavek, J. Outrata, and V. Vychodil

present the main results. Examples and experiments demonstrating the speed-
up are contained in Section 4. Section 5 presents a summary and an outline of
a future research.

2 Preliminaries

2.1 Fuzzy Sets and Fuzzy Logic

In this section, we recall necessary notions from fuzzy sets and fuzzy logic. We
refer to [4,14,16] for further details. The concept of a fuzzy set generalizes that
of an ordinary set in that an element may belong to a fuzzy set in an interme-
diate truth degree not necessarily being 0 or 1. As a structure of truth degrees,
equipped with operations for logical connectives, we use complete residuated
lattices, i.e. structures L = 〈L, ∧, ∨, ⊗, →, 0, 1〉, where 〈L, ∧, ∨, 0, 1〉 is a com-
plete lattice with 0 and 1 being the least and greatest element of L, respec-
tively; 〈L, ⊗, 1〉 is a commutative monoid (i.e. ⊗ is commutative, associative,
and a⊗1 = 1⊗a = a for each a ∈ L); and ⊗ and → satisfy so-called adjointness
property, i.e. a ⊗ b ≤ c iff a ≤ b → c for each a, b, c ∈ L. Elements a of L are
called truth degrees, ⊗ and → are (truth functions of) “fuzzy conjunction” and
“fuzzy implication”.

The most commonly used set L of truth degrees is the real interval [0, 1];
with a ∧ b = min(a, b), a ∨ b = max(a, b). The three most important pairs of
“fuzzy conjunction” and “fuzzy implication” are: �Lukasiewicz, with a ⊗ b =
max(a + b − 1, 0), a → b = min(1 − a + b, 1); minimum, with a ⊗ b = min(a, b),
a → b = 1 if a ≤ b and = b else; and product, with a ⊗ b = a · b, a → b = 1
if a ≤ b and = b/a else. Often, we need a finite chain {a0 = 0, a1, . . . , an = 1}
(a0 < · · · < an); with corresponding �Lukasiewicz (ak ⊗ al = amax(k+l−n,0),
ak → al = amin(n−k+l,n)) or minimum (ak ⊗ al = amin(k,l), ak → al = an for
ak ≤ al and ak → al = al otherwise) connectives. Note that complete residuated
lattices are basic structures of truth degrees used in fuzzy logic, see [13,14].
Residuated lattices cover many particular structures, i.e. sets of truth degrees
and fuzzy logical connectives, used in applications of fuzzy logic.

A fuzzy set A in a universe set U is a mapping A : U → L with A(u) being
interpreted as a degree to which u belongs to A. To make L explicit, fuzzy sets
are also called L-sets. By LU or LU we denote the set of all fuzzy sets in universe
U , i.e. LU = {A | A is a mapping of U to L}. If U = {u1, . . . , un} then A is
denoted by A = { a1

/
u1, . . . , an

/
un} meaning that A(ui) equals ai. For brevity,

we omit elements of U whose membership degree is zero. A binary fuzzy relation
I between sets X and Y is a fuzzy set in universe U = X × Y , i.e. a mapping
I : X × Y → L assigning to each x ∈ X and y ∈ Y a degree I(x, y) to which x
is related to y.

For A ∈ LU and a ∈ L, a set aA = {u ∈ U | A(u) ≥ a} is called an a-cut of A
(the ordinary set of elements from U which belong to A to degree at least a); a
fuzzy set a → A in U defined by (a → A)(u) = a → A(u) is called an a-shift of
A; a fuzzy set a⊗A in U defined by (a⊗A)(u) = a⊗A(u) is called an a-multiple
of A.



Direct Factorization by Similarity of FCL 71

Given A, B ∈ LU , we define a subsethood degree S(A, B) =
∧

u∈U

(
A(u) →

B(u)
)
, which generalizes the classical subsethood relation ⊆. S(A, B) represents

a degree to which A is a subset of B. In particular, we write A ⊆ B iff S(A, B) = 1
(A is fully contained in B). As a consequence, A ⊆ B iff A(u) ≤ B(u) for each
u ∈ U .

2.2 Fuzzy Concept Lattices

A data table with fuzzy attributes can be identified with a triplet 〈X, Y, I〉
where X is a non-empty set of objects (table rows), Y is a non-empty set of
attributes (table columns), and I is a (binary) fuzzy relation between X and Y ,
i.e. I : X × Y → L. In formal concept analysis, the triplet 〈X, Y, I〉 is called a
formal fuzzy context. For x ∈ X and y ∈ Y , a degree I(x, y) ∈ L is interpreted
as a degree to which object x has attribute y (table entry corresponding to row
x and column y). For L = {0, 1}, formal fuzzy contexts can be identified in an
obvious way with ordinary formal contexts.

For fuzzy sets A ∈ LX and B ∈ LY we define fuzzy sets A⇑ ∈ LY and
B⇓ ∈ LX (denoted also A⇑I and B⇓I to make I explicit) by

A⇑(y) =
∧

x∈X(A(x) → I(x, y)), (1)

B⇓(x) =
∧

y∈Y (B(y) → I(x, y)). (2)

Using basic rules of predicate fuzzy logic one can see that A⇑ is a fuzzy set of
all attributes common to all objects from A, and B⇓ is a fuzzy set of all objects
sharing all attributes from B. The set

B (X, Y, I) = {〈A, B〉 | A⇑ = B, B⇓ = A}
of all fixpoints of 〈⇑, ⇓〉 is called a fuzzy concept lattice associated to 〈X, Y, I〉;
elements 〈A, B〉 ∈ B (X, Y, I) are called formal concepts of 〈X, Y, I〉; A and B
are called the extent and intent of 〈A, B〉, respectively. Under a partial order ≤
defined on B (X, Y, I) by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2,

B (X, Y, I) happens to be a complete lattice. The following theorem, so-called
main theorem of fuzzy concept lattices, describes the structure of B (X, Y, I), see
[4] for details.

Theorem 1. B (X, Y, I) is under ≤ a complete lattice where the infima and
suprema are given by

∧
j∈J 〈Aj , Bj〉 =

〈⋂
j∈J Aj , (

⋃
j∈J Bj)⇓⇑

〉
, (3)

∨
j∈J 〈Aj , Bj〉 =

〈
(
⋃

j∈J Aj)⇑⇓,
⋂

j∈J Bj

〉
. (4)

Moreover, an arbitrary complete lattice K = 〈K, ≤〉 is isomorphic to some
B (X, Y, I) iff there are mappings γ : X × L → K, μ : Y × L → K such that
(i) γ(X × L) is

∧
-dense in K, μ(Y × L) is

∨
-dense in K and

(ii) γ(x, a) ≤ μ(y, b) iff a ⊗ b ≤ I(x, y).
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3 Factorization of B (X, Y, I) by Similarity

3.1 The Notion of Factorization of Fuzzy Concept Lattice by
Similarity

We need to recall the parameterized method of factorization introduced in [2].
Given 〈X, Y, I〉, introduce a binary fuzzy relation ≈Ext on B (X, Y, I) by

(〈A1, B1〉 ≈Ext 〈A2, B2〉) =
∧

x∈X(A1(x) ↔ A2(x)) (5)

for 〈Ai, Bi〉 ∈ B (X, Y, I), i = 1, 2. Here, ↔ is a so-called biresiduum (i.e., a truth
function of equivalence connective) defined by

a ↔ b = (a → b) ∧ (b → a).

(〈A1, B1〉 ≈Ext 〈A2, B2〉), called a degree of similarity of 〈A1, B1〉 and 〈A2, B2〉,
is just the truth degree of “for each object x: x is covered by A1 iff x is covered
by A2”. One can also consider a fuzzy relation ≈Int defined by

(〈A1, B1〉 ≈Int 〈A2, B2〉) =
∧

y∈Y (B1(y) ↔ B2(y)). (6)

It can be shown [4] that measuring similarity of formal concepts via intents Bi

coincides with measuring similarity via extents Ai, i.e. ≈Ext coincides with ≈Int,
corresponding naturally to the duality of extent/intent view. As a result, we write
also just ≈ instead of ≈Ext and ≈Int. Note also that ≈ is a fuzzy equivalence
relation on B (X, Y, I).

Given a truth degree a ∈ L (a similarity threshold specified by a user), consider
the thresholded relation a≈ on B (X, Y, I) defined by

〈〈A1, B1〉, 〈A2, B2〉〉 ∈ a≈ iff (〈A1, B1〉 ≈ 〈A2, B2〉) ≥ a.

That is, a≈ is an ordinary relation “being similar to degree at least a” and
we thereby call it simply similarity (relation). a≈ is a reflexive and symmetric
binary relation (i.e., a tolerance relation) on B(X, Y, I). However, a≈ need not
be transitive (it is transitive if, for instance, a ⊗ b = a ∧ b holds true in L). a≈
is said to be compatible if it is preserved under arbitrary suprema and infima in
B(X, Y, I), i.e. if 〈cj , c

′
j〉 ∈ a≈ for j ∈ J implies both 〈

∧
j∈J cj ,

∧
j∈J c′j〉 ∈ a≈ and

〈
∨

j∈J cj ,
∨

j∈J c′j〉 ∈ a≈ for any cj , c
′
j ∈ B (X, Y, I), j ∈ J . We call ≈ compatible

if a≈ is compatible for each a ∈ L.
Call a subset B of B (X, Y, I) an a≈-block if it is a maximal subset of

B (X, Y, I) such that any two formal concepts from B are similar to degree
at least a, i.e., for any c1, c2 ∈ B we have 〈c1, c2〉 ∈ a≈. Note that the notion
of an a≈-block generalizes that of an equivalence class: if a≈ is an equivalence
relation then a≈-blocks are exactly the equivalence classes of a≈. Denote by
B (X, Y, I)/a≈ the collection of all a≈-blocks. It follows from the results on
tolerances on complete lattices [12] that if a≈ is compatible, then a≈-blocks
are special intervals in the concept lattice B (X, Y, I). For a formal concept
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〈A, B〉 ∈ B (X, Y, I), denote by 〈A, B〉a and 〈A, B〉a the infimum and the supre-
mum of the set of all formal concepts which are similar to 〈A, B〉 to degree at
least a, that is,

〈A, B〉a =
∧

{〈A′, B′〉 | 〈〈A, B〉, 〈A′, B′〉〉 ∈ a≈}, (7)
〈A, B〉a =

∨
{〈A′, B′〉 | 〈〈A, B〉, 〈A′, B′〉〉 ∈ a≈}. (8)

Operators . . .a and . . .a are important in description of a≈-blocks [12]:

Lemma 1. a≈-blocks are exactly intervals of B (X, Y, I) of the form
[〈A, B〉a, (〈A, B〉a)a], i.e.,

B (X, Y, I)/a≈ = {[〈A, B〉a, (〈A, B〉a)a] | 〈A, B〉 ∈ B (X, Y, I)}.

Note that an interval with lower bound 〈A1, B1〉 and upper bound 〈A2, B2〉
is the subset [〈A1, B1〉, 〈A2, B2〉] = {〈A, B〉 ∈ B(X, Y, I) | 〈A1, B1〉 ≤ 〈A, B〉 ≤
〈A2, B2〉}.

Now, define a partial order � on blocks of B (X, Y, I)/a≈ by

[c1, c2] � [d1, d2] iff c1 ≤ d1 (iff c2 ≤ d2) (9)

for any [c1, c2], [d1, d2] ∈ B (X, Y, I)/a≈. Then we have [2]:

Theorem 2. B (X, Y, I)/a≈ equipped with � is a partially ordered set which is
a complete lattice, the so-called factor lattice of B (X, Y, I) by similarity ≈ and
threshold a.

Elements of B (X, Y, I)/a≈ can be seen as similarity-based granules of formal
concepts/clusters from B (X, Y, I). B (X, Y, I)/a≈ thus provides a granular view
on the possibly large B (X, Y, I). For further details and properties of B (X, Y, I)/
a≈ we refer to [2].

3.2 Similarity-Based Factorization of Input Data 〈X, Y, I〉 and
Direct Computing of the Factor Lattice B (X, Y, I)/a≈

We now turn our attention to the problem of how to compute the factor lattice.
One way is to follow the definition and to split the computation of B (X, Y, I)/a≈
into two steps: (1) compute the possibly large fuzzy concept lattice B (X, Y, I)
and (2) compute the a≈-blocks, i.e. the elements of B (X, Y, I)/a≈. Although
there are efficient algorithms for both (1) and (2), computing B (X, Y, I)/a≈ this
way is time demanding. In what follows, we present a way to obtain B (X, Y, I)/
a≈ directly, without the need to compute B (X, Y, I) first and then to compute
the blocks of a≈. We need the following lemmas.

Lemma 2 ([6]). For 〈A, B〉 ∈ B (X, Y, I), we have

(a) 〈A, B〉a =
〈
(a ⊗ A)⇑⇓, a → B

〉
,

(b) 〈A, B〉a =
〈
a → A, (a ⊗ B)⇓⇑

〉
.
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Lemma 3. If A is an extent then we have a → A = (a → A)⇑⇓; similarly for
an intent B.

Proof. Follows from Lemma 2, cf. [4].

Remark 1. Thus we have (〈A, B〉a)a =
〈
a → (a ⊗ A)⇑⇓, (a ⊗ (a → B))⇓⇑

〉
.

Let us now introduce the construction of a similarity-based factorization as-
signing to 〈X, Y, I〉 a “factorized data” 〈X, Y, I〉/a. For a formal fuzzy context
〈X, Y, I〉 and a (user-specified) threshold a ∈ L, introduce a formal fuzzy context
〈X, Y, I〉/a by

〈X, Y, I〉/a := 〈X, Y, a → I〉.

〈X, Y, I〉/a will be called the factorized context of 〈X, Y, I〉 by threshold a. That
is, 〈X, Y, I〉/a has the same objects and attributes as 〈X, Y, I〉, and the incidence
relation of 〈X, Y, I〉/a is a → I. Since

(a → I)(x, y) = a → I(x, y),

computing 〈X, Y, I〉/a from 〈X, Y, I〉 is easy. Note that objects and attributes
are more similar in 〈X, Y, I〉/a than in the original context 〈X, Y, I〉. Indeed, for
any x1, x2 ∈ X and y1, y2 ∈ Y one can easily verify that

I(x1, y1) ↔ I(x2, y2) ≤ (a → I)(x1, y1) ↔ (a → I)(x2, y2)

which intuitively says that in the factorized context, the table entries are more
similar (closer) than in the original one.

A way to obtain the factor lattice B (X, Y, I)/a≈ directly from input data
〈X, Y, I〉 is based on the next theorem.

Theorem 3. For a formal fuzzy context 〈X, Y, I〉 and a threshold a ∈ L we have

B (X, Y, I)/a≈ ∼= B (X, Y, a → I).

In words, B (X, Y, I)/a≈ is isomorphic to B (X, Y, a → I). Moreover, under the
isomorphism, [〈A1, B1〉, 〈A2, B2〉] ∈ B (X, Y, I)/a≈ corresponds to 〈A2, B1〉 ∈
B (X, Y, a → I).

Proof. Let ⇑ and ⇓ denote the operators (1) and (2) induced by I and ⇑a and
⇓a denote the operators induced by a → I, that is, for A ∈ LX and B ∈ LY we
have

A⇑a(y) =
∧

x∈X

A(x) → (a → I)(x, y),

B⇓a(y) =
∧

y∈Y

B(y) → (a → I)(x, y).
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Take any A ∈ LX . Then we have

A⇑a(y) =
∧

x∈X

A(x) → (a → I(x, y)) =

=
∧

x∈X

a → (A(x) → I(x, y)) =

= a →
∧

x∈X

(A(x) → I(x, y)) = a → A⇑(x),

and

A⇑a⇓a(x) =
∧

y∈Y

A⇑a(y) → (a → I(x, y)) =

=
∧

y∈Y

a → (A⇑a(y) → I(x, y)) = a →
∧

y∈Y

(A⇑a(y) → I(x, y)) =

= a →
∧

y∈Y

([
∧

x∈X

a → (A(x) → I(x, y))] → I(x, y)) =

= a →
∧

y∈Y

([
∧

x∈X

(a ⊗ A(x)) → I(x, y)] → I(x, y)) =

= a →
∧

y∈Y

((a ⊗ A)⇑(x) → I(x, y)) = a → (a ⊗ A)⇑⇓(x),

i.e.
A⇑a = a → A⇑ and A⇑a⇓a = a → (a ⊗ A)⇑⇓. (10)

Now, let [〈A1, B1〉, 〈A2, B2〉] ∈ B (X, Y, I)/a≈. By Lemmas 1, 2 and 3, there
is 〈A, B〉 ∈ B (X, Y, I) such that 〈A1, B1〉 = 〈A, B〉a = 〈(a ⊗ A)⇑⇓, a → B〉
and 〈A2, B2〉 = (〈A, B〉a)a = 〈a → (a ⊗ A)⇑⇓, (a ⊗ (a → B))⇓⇑〉. Since 〈A, B〉 =
〈A, A⇑〉, (10) yields

A2 = a → (a ⊗ A)⇑⇓ = A⇑a⇓a

and
B1 = a → B = a → A⇑ = A⇑a .

This shows 〈A2, B1〉 ∈ B (X, Y, a → I).
Conversely, if 〈A2, B1〉 ∈ B (X, Y, a → I) then using (10), B1 = A⇑a

2 =
a → A⇑

2 and A2 = A⇑a⇓a

2 = a → (a ⊗ A2)⇑⇓. By Lemma 1 and Lemma 2,
[〈B⇓

1 , B1〉, 〈A2, A
⇑
2 〉] ∈ B (X, Y, I)/a≈. The proof is complete.

Remark 2. (1) The blocks of B (X, Y, I)/a≈ can be reconstructed from the formal
concepts of B (X, Y, a → I):
If 〈A, B〉 ∈ B (X, Y, a → I) then [〈B⇓, B〉, 〈A, A⇑〉] ∈ B (X, Y, I)/a≈.
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(2) Computing B (X, Y, a → I) means computing of the ordinary fuzzy con-
cept lattice. This can be done by an algorithm of polynomial time delay com-
plexity, see [3].

This shows a way to obtain B (X, Y, I)/a≈ without computing first the whole
B (X, Y, I) and then computing the factorization. Note that in [6], we showed an
alternative way to speed up the computation of B (X, Y, I)/a≈ by showing that
suprema of blocks of B (X, Y, I)/a≈ are fixed points of a certain fuzzy closure
operator. Compared to that, the present approach shows that the blocks of
B (X, Y, I)/a≈ can be interpreted as formal concepts in a “factorized context”
〈X, Y, I〉/a.

4 Examples and Experiments

In this section we demonstrate the effect of reduction of size of a fuzzy concept
lattice by factorization by similarity, and the speed-up achieved by our algorithm
based on Theorem 3. By reduction of size of a fuzzy concept lattice given by
a data table 〈X, Y, I〉 with fuzzy attributes and a user-specified threshold a, we
mean the ratio

|B(X, Y, I)/a≈|
|B(X, Y, I)|

of the number |B(X, Y, I)/a≈| of elements of B(X, Y, I)/a≈, i.e. the number of el-
ements of the factor lattice, to the number |B(X, Y, I)| of elements of B(X, Y, I),

Table 1. Data table with fuzzy attributes

1 2 3 4 5 6 7

1 Czech 0.4 0.4 0.6 0.2 0.2 0.4 0.2
2 Hungary 0.4 1.0 0.4 0.0 0.0 0.4 0.2
3 Poland 0.2 1.0 1.0 0.0 0.0 0.0 0.0
4 Slovakia 0.2 0.6 1.0 0.0 0.2 0.2 0.2
5 Austria 1.0 0.0 0.2 0.2 0.2 1.0 1.0
6 France 1.0 0.0 0.6 0.4 0.4 0.6 0.6
7 Italy 1.0 0.2 0.6 0.0 0.2 0.6 0.4
8 Germany 1.0 0.0 0.6 0.2 0.2 1.0 0.6
9 UK 1.0 0.2 0.4 0.0 0.2 0.6 0.6
10 Japan 1.0 0.0 0.4 0.2 0.2 0.4 0.2
11 Canada 1.0 0.2 0.4 1.0 1.0 1.0 1.0
12 USA 1.0 0.2 0.4 1.0 1.0 0.2 0.4

attributes: 1 – High Gross Domestic Product per capita (USD), 2 – High Consumer
Price Index (1995=100) , 3 – High Unemployment Rate (percent - ILO), 4 – High
production of electricity per capita (kWh), 5 – High energy consumption per capita
(GJ), 6 – High export per capita (USD), 7 – High import per capita (USD)



Direct Factorization by Similarity of FCL 77

Table 2. �Lukasiewicz fuzzy logical connectives, B (X, Y, I) of data from Tab. 1:
|B (X, Y, I)| = 774, time for computing B (X, Y, I) = 2292 ms; table entries for thresh-
olds a = 0.2, 0.4, 0.6, 0.8.

0.2 0.4 0.6 0.8

size |B (X, Y, I)/a≈| 8 57 193 423
size reduction 0.010 0.073 0.249 0.546
naive algorithm (ms) 8995 9463 8573 9646
our algorithm (ms) 23 214 383 1517
speed-up 391.09 44.22 22.38 6.36
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Fig. 1. Size reduction and speed-up from Tab. 2

Table 3. Minimum-based fuzzy logical connectives, B (X, Y, I) of data from Tab. 1:
|B (X, Y, I)| = 304, time for computing B (X, Y, I) = 341 ms; table entries for thresholds
a = 0.2, 0.4, 0.6, 0.8.

0.2 0.4 0.6 0.8

size |B (X, Y, I)/a≈| 8 64 194 304
size reduction 0.026 0.210 0.638 1.000
naive algorithm (ms) 1830 1634 3787 4440
our algorithm (ms) 23 106 431 1568
speed-up 79.57 15.42 8.79 2.83

i.e. the number of elements of the original lattice. By a speed-up we mean the
ratio of the time for computing the factor lattice B(X, Y, I)/a≈ by a naive algo-
rithm to the time for computing B(X, Y, I)/a≈ by our algorithm. By “our algo-
rithm” we mean the algorithm computing B (X, Y, I)/a≈ directly by reduction
to the computation of B(〈X, Y, I〉/a), described in subsection 3.2. By “naive al-
gorithm” we mean computing B (X, Y, I)/a≈ by first generating B (X, Y, I) (by
a polynomial time-delay algorithm from [3]) and subsequently generating the
a≈-blocks by producing [〈A, B〉a, (〈A, B〉a)a].

Consider the data table depicted in Tab. 1. The data table contains countries
(objects from X) and some of their economic characteristics (attributes from
Y ). The values of the characteristics are scaled to interval [0, 1] so that the
characteristics can be considered as fuzzy attributes.
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Fig. 2. Size reduction and speed-up from Tab. 3

Tab. 2 summarizes the results when using �Lukasiewicz fuzzy logical operations
and threshold values a = 0.2, 0.4, 0.6, 0.8. The whole concept lattice B (X, Y, I)
contains 774 formal concepts, computing B (X, Y, I) using the polynomial time
delay algorithm from [3] takes 2292ms.

The example demonstrates that smaller thresholds lead to both larger size
reduction and speed-up. Furthermore, we can see that the time needed for com-
puting the factor lattice B (X, Y, I)/a≈ is smaller than time for computing the
original concept lattice B (X, Y, I).

Note also that since computing B (X, Y, I) takes 2292 ms, most of the time
consumed by the naive algorithm is spent on factorization. For instance, for
a = 0.2, 8995 ms is consumed in total of which 2292 ms is spent on computing
B (X, Y, I) and 6703 = 8995−2292 ms is spent on factorization, i.e. on computing
B (X, Y, I)/a≈ from B (X, Y, I).

Fig. 1 contains graphs depicting reduction |B (X, Y, I)/a≈|/|B (X, Y, I)| and
speed-up from Tab. 2.

Tab. 3 and Fig. 2 show the same characteristics when using the minimum-
based fuzzy logical operations (instead of �Lukasiewicz fuzzy logical operations).

5 Conclusions and Future Research

We presented an additional method of factorization of fuzzy concept lattices. A
factor lattice represents an approximate version of the original fuzzy concept lat-
tice. The size of the factor lattice is controlled by a user-specified threshold. The
factor lattice can be computed directly from input data, without first computing
the possibly large original fuzzy concept lattice.

Our future research will focus on factorization of further types of fuzzy concept
lattices. In particular, [7] presents a method of fast factorization of fuzzy concept
lattices with hedges, see [8], which can be seen as a generalization of the method
from [6]. Fuzzy concept lattices with hedges serve as a common platform for some
of the types of fuzzy concept lattices, see [9], and also [10,17]. An immediate
problem is whether and to what extent the results presented in this paper can
be accommodated for the setting of fuzzy concept lattices with hedges.
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Succinct System of Minimal Generators:
A Thorough Study, Limitations and New Definitions
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Abstract. Minimal generators (MGs) are the minimal ones (w.r.t. the number of
items) among equivalent itemsets sharing a common set of objects, while their as-
sociated closed itemset (CI) is the largest one. The pairs - composed by MGs and
their associated CI - divide the itemset lattice into distinct equivalence classes.
Such pairs were at the origin of various works related to generic association
rule bases, concise representations of frequent itemsets, arbitrary Boolean ex-
pressions, etc. Furthermore, the MG set presents some important properties like
the order ideal. The latter helped some level-wise bottom-up and even slightly
modified depth-first algorithms to efficiently extract interesting knowledge. Nev-
ertheless, the inherent absence of a unique MG associated to a given CI motivates
an in-depth study of the possibility of discovering a kind of redundancy within
the MG set. This study was started by Dong et al. who introduced the succinct
system of minimal generators (SSMG) as an attempt to eliminate the redundancy
within this set. In this paper, we give a thorough study of the SSMG as formerly
defined by Dong et al. Then, we show that the latter suffers from some drawbacks.
After that, we introduce new definitions allowing to overcome the limitations of
their work. Finally, an experimental evaluation shows that the SSMG makes it
possible to eliminate without information loss an important number of redundant
MGs.

1 Introduction

One efficient way to characterize the itemset lattice is to divide it into different equiva-
lence classes [1]. The minimal elements (w.r.t. the number of items) in each equivalence
class are called minimal generators (MGs) [2] (also referred to as 0-free itemsets [3]
and key itemsets [4]) and the largest element is called a closed itemset (CI) [5]. The set
of frequent CIs is among the first concise representations of the whole set of frequent
itemsets that were introduced in the literature. This set has been extensively studied and
tens of algorithms were proposed to efficiently extract it [6,7]. In the contrary, and de-
spite the important role played by the MGs, they have been paid little attention. Indeed,
the MG set is, in general, extracted as a means to achieve frequent itemset computations
[1,8], frequent CI computations [4,5,7], the Iceberg lattice construction [9], etc. The use
of the MGs was mainly motivated by their small sizes (they are hence the first elements
to be reached in each equivalence class) and by the fact that the MG set fulfills the order

S. Ben Yahia et al. (Eds.): CLA 2006, LNAI 4923, pp. 80–95, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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ideal property which clearly increased the efficiency of both level-wise bottom-up algo-
rithms [4,5,9] and even slightly modified depth-first ones [7]. Nevertheless, some work
has been done on the semantic advantages offered by the use of MGs. These works are
mainly related to generic association rule bases [2,10,11,12,13], concise representations
of frequent itemsets [10,11,14,15,16], arbitrary Boolean expressions [17], etc.

The inherent absence of a unique MG associated to a given CI motivates an in-depth
study to try to discover a kind of redundancy within the MGs associated to a given CI.
This study was started thanks to Dong et al. who recently note that some MGs asso-
ciated to a given CI can be derived from other ones [18]. Indeed, they consider the set
of MGs by distinguishing two distinct categories: succinct MGs and redundant ones.
Thus, Dong et al. introduce the succinct system of minimal generators (SSMG) as a
concise representation of the MG set. They state that redundant MGs can be pruned
out from the MG set since they can straightforwardly be inferred, without loss of infor-
mation, using the information gleaned from succinct ones [18].

In this paper, we give a thorough study of the SSMG as formerly defined by Dong
et al. [18]. Then, we show that the succinct MGs, as defined in [18], proves not to be an
exact representation of the MG set (i.e., no loss of information w.r.t. redundant MGs)
in contrary to authors’ claims. Furthermore, we also show that the different SSMGs
associated to an extraction context do not necessarily share the same size, in contrary
to what was stated in [18]. After that, we introduce new definitions allowing to over-
come the limitations of the work of Dong et al. Indeed, our definitions allow, on the one
hand, the SSMG to act as an exact representation and, on the other hand, the different
SSMGs associated to an extraction context to have the same size. Finally, carried out
experiments show that the SSMG makes it possible to eliminate without loss of infor-
mation an important number of redundant MGs and, hence, to almost reach the ideal
case: only one succinct MG per equivalence class.

The organization of the paper is as follows: Section 2 recalls some preliminary no-
tions that will be used in the remainder of the paper. Section 3 presents a detailed formal
study of the SSMG as formerly defined by Dong et al. [18], sketches its limitations,
and gives new definitions allowing to go beyond the drawbacks of their work. Section
4 is dedicated to the related work. In Section 5, several experiments illustrate the utility
of the SSMG towards the redundancy removal within the MG set. Finally, Section 6
concludes this paper and points out our future work.

2 Preliminary Notions

In this section, we present some notions that will be used in the following.

Definition 1. (EXTRACTION CONTEXT) An extraction context is a triplet K
= (O, I, R), where O represents a finite set of objects, I is a finite set of items and
R is a binary (incidence) relation (i.e., R ⊆ O × I). Each couple (o, i) ∈ R indicates
that the object o ∈ O has the item i ∈ I.

Example 1. Consider the extraction context in Table 1 where O = {1, 2, 3, 4} and I =
{a, b, c, d, e, f, g}. The couple (2, d) ∈ R since it is crossed in the matrix.
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Table 1. An extraction context K

a b c d e f g
1 × × × × ×
2 × × × × ×
3 × × × × ×
4 × × × × × ×

For arbitrary sets I ⊆ I and O ⊆ O, the following derivation operators are defined
[19]: I ′ = {o ∈ O | ∀ i ∈ I , (o, i) ∈ R}, and, O′ = {i ∈ I | ∀ o ∈ O, (o, i) ∈ R}.
The composite operators ′′ define closures on (2I , ⊆) and (2O, ⊆). A pair (I , O), of
mutually corresponding subsets, i.e., I = O′ and O = I ′, is called a (formal) concept
[19], where I is the intent and O is the extent (e.g., (cde, 124)1 is a concept from Table
1). Once applied, the corresponding operator ′′ induces an equivalence relation on the
power set of items 2I partitioning it into distinct subsets called equivalence classes [1],
which will further be denoted γ-equivalence classes. In each class, all itemsets appear
in the same set of objects and, hence, have the same closure. The largest element (w.r.t.
set inclusion) is called a closed itemset (CI) – the intent part of a formal concept – while
the minimal incomparable ones are called minimal generators (MGs). These notions
are defined as follows:

Definition 2. (CLOSED ITEMSET)[5] An itemset f ⊆ I is said to be closed if and only
if f ′′ = f .

Example 2. Given the extraction context depicted by Table 1, the itemset “cdeg” is a
closed itemset since it is the maximal set of items common to the set of objects {1, 4}.
The itemset “cdg” is not a closed itemset since all objects containing the itemset “cdg”
also contain the item “e”.

Definition 3. (MINIMAL GENERATOR)[2] An itemset g ⊆ I is said to be a minimal
generator of a closed itemset f if and only if g′′ = f and � g1 ⊂ g s.t. g′′

1
= f .

The set MGf of the MGs associated to an CI f is hence MGf = {g ⊆ I | g′′ = f ∧ �

g1 ⊂ g s.t. g′′
1

= f}.

Example 3. Consider the CI “cdeg” described by the previous example. “cdeg” has
“dg” as an MG. Indeed, (dg)′′ = cdeg and the closure of every subset of “dg” is different
from “cdeg”. Indeed, (∅)′′ = c, (d)′′ = cde and (g)′′ = cg. The CI “cdeg” has also another
MG which is “eg”. Hence, MGcdeg = {dg, eg}. “cdeg” is then the largest element of
its γ-equivalence class, whereas “dg” and “eg” are the minimal incomparable ones. All
these itemsets share the set of objects {1, 4}.

Since in practice, we are mainly interested in itemsets that occur at least in a given
number of objects, we introduce the notion of support and frequency.

Definition 4. (SUPPORT AND FREQUENCY) The support of an itemset I ⊆ I, denoted
by Supp(I ), is equal to the number of objects in K that have all items from I . While

1 We use a separator-free form for the sets, e.g., the set cde stands for {c, d, e}.
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the frequency of I in K is equal to Supp(I)
|O| . I is said to be frequent in K if Supp(I ) is

greater than or equal to a minimum support threshold, denoted minsupp.

In the remainder, we will mainly use the support of itemsets instead of their frequency.

Example 4. Consider the itemset “cde” of the extraction context depicted by Table 1.
The objects 1, 2 and 4 contain the itemset “cde”. Hence, Supp(cde) = 3. If minsupp = 2,
then “cde” is frequent in K since Supp(cde) = 3 ≥ 2.

3 Succinct System of Minimal Generators

In this section, and as a first step, we study the main structural properties of the succinct
system of minimal generators (SSMG) as formerly defined by Dong et al. [18]2. As
a second step, we highlight some drawbacks of their work. Finally, we propose new
definitions allowing to overcome these limitations.

3.1 A Thorough Study

Recently, Dong et al. note the existence of a certain form of intra-redundancy within
the set of the minimal generators (MGs) associated to a given closed itemset (CI), i.e.,
that one can derive some MGs from the others. They, hence, presented a study [18] in
which they split the set of MGs associated to a given CI into three distinct subsets. The
formalization of these subsets, introduced in Definition 6, requires that we adopt a total
order relation among itemsets defined as follows:

Definition 5. (TOTAL ORDER RELATION) Let 	 be a total order relation among item
literals, i.e., ∀ i1 , i2 ∈ I, we have either i1 	 i2 or i2 	 i1 . This relation is extended
to also cope with itemsets of different sizes by first considering their cardinality. This is
done as follows: Let X and Y be two itemsets and let Card(X ) and Card(Y ) be their
respective cardinalities. We then have:

– If Card(X ) < Card(Y ), then X ≺ Y .
– If Card(X ) = Card(Y ), then X and Y are compared using their lexicographic

order. Hence, X ≺ Y if and only if X 	 Y and X �= Y .

Example 5. Consider the alphabetic order on items as the basis for the total order rela-
tion 	 on itemsets3:

- Since Card(d) < Card(be), then d ≺ be.
- Since Card(abd) = Card(abe), then abd and abe are compared using their lexico-

graphic order. We then have abd ≺ abe since abd 	 abe and abd �= abe.

2 Please note that we mainly refer to the SSMG MINER algorithm proposed by the authors
[18]. In fact, the concrete examples related to SSMG MINER are the only source of precise
information about several aspects of the target structure.

3 In the remainder of the paper, we will only mention the criterion used to order items (e.g.,
alphabetic order, ascending/descending support order, etc). The latter is then extended to be
the total order relation on itemsets, as shown in Definition 5.
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Please note that the cardinality factor preserves the spirit of MGs as the smallest itemset
in a γ-equivalence class will necessarily be an MG. Three categories of MGs emerge
[18], which we formalize as follows:

Definition 6. (MINIMAL GENERATORS’ CATEGORIES) The set MGf , of the MGs as-
sociated to an CI f , can be portioned into three distinct subsets as follows:

1. MGrepf = {g ∈ MGf | � g1 ∈ MGf s.t. g1 ≺ g} contains the smallest MG, given
a total order relation 	, which constitutes the representative MG of f .

2. MGcanf = {g ∈ MGf | (g /∈ MGrepf ) ∧ (∀ g1 ⊂ g, g1 ∈ MGrepf1
where f1

= g′′
1

)} contains the canonical MGs of f . A canonical MG is not the smallest one
in MGf and, hence, is not the representative MG of f . Nevertheless, all its subsets
are the representative MGs of their respective closures.

3. MGredf = {g ∈ MGf | ∃ g1 ⊂ g s.t. g1 /∈ MGrepf1
where f1 = g′′

1
} contains

the redundant MGs of f .

An MG is said to be succinct if it is either a representative or a canonical one [18].
The set MGsucf , composed by the succinct MGs associated to the CI f , is then equal
to the union of MGrepf and MGcanf : MGsucf = MGrepf

⋃
MGcanf . Hence,

MGredf = MGf\MGsucf .

Example 6. Let us consider the extraction context K depicted by Table 1. The total
order relation 	 is set to the alphabetic order. Table 2 shows, for each CI, the follow-
ing information: its MGs, its succinct MGs and its support. In the fourth column, the
representative MG is marked with bold letters. The others are hence canonical ones.
Note that for 11 CIs, there are 23 MGs, from which only 13 are succinct ones (11 are
representative MGs and only 2 are canonical ones). The MG “ad” is a representative
one, since it is the smallest MG, w.r.t. 	, among those of “abcde”. Indeed, ad 	 ae, ad
	 bd and ad 	 be. The MG “e” is not the representative of its CI “cde”, since d 	 e.
Nevertheless, its unique subset (i.e., “∅”) is the representative MG of its CI “c”. Hence,
“e” is a canonical MG. Finally, the MG “bdg” is a redundant one, since at least one of
its subsets is not a representative MG (“bg”, for example).

The definition of the SSMG is as follows [18]:

Definition 7. (SUCCINCT SYSTEM OF MINIMAL GENERATORS) Given a total order
relation 	, a succinct system of minimal generators (SSMG) consists of, for each CI f ,
the set MGrepf containing its representative MG and, if there is any, the set MGcanf

containing its canonical MGs.

It is important to mention that, for a given extraction context, the SSMG is not unique
since it closely depends on the choice of the total order relation 	 (e.g., the alphabetic
order, the ascending/descending support order, etc.).

In the remainder, the set of representative (resp. canonical, redundant, succinct and
all) MGs extracted from a context K will be denoted MGrepK (resp. MGcanK,
MGredK, MGsucK and MGK). The set of CIs extracted from K will be denoted
CIK. The letter F will be added to each notation if the respective set is restricted to its
frequent elements.
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Table 2. The CIs extracted from K and for each one, the corresponding MGs, succinct MGs and
support

# CI MGs Succinct MGs Support

1 c ∅ ∅ 4
2 abc a, b a, b 3
3 cde d, e d, e 3
4 cg g g 3
5 cfg f f 2
6 abcde ad, ae, bd, be ad 2
7 abcg ag, bg ag 2
8 abcfg af, bf af 1
9 cdeg dg, eg dg 2

10 cdefg df, ef df 1
11 abcdeg adg, aeg, bdg, beg adg 1

Proposition 1. The total order relation 	 ensures the uniqueness of the representative
MG associated to a given CI. Hence, the cardinality of the set of representative MGs
is equal to that of CIs (i.e., Card(MGrepK) = Card(CIK)).

The proof is trivial. Indeed, there is only one representative MG per γ-equivalence class
(see Definition 6).

Remark 1. The respective sizes of both sets MGcanK and MGredK are closely re-
lated to the nature of the extraction context, i.e., whether the objects are highly/weakly
correlated. Nevertheless, if the set MGcanK is empty, then the set MGredK is also
empty (the reverse is not always true).

To show that the set MGsucK is an order ideal (or down-set) in (2I , ⊆) [19], we have
to prove that all subsets of a representative MG are also representative ones. This is
done thanks to Proposition 3 whose the proof requires Lemma 1 and Proposition 2.

Lemma 1. [19] Let X and Y be two itemsets. If X ′′ = Y ′′, then ∀ Z ⊆ I, (X
⋃

Z)′′

= (Y
⋃

Z)′′.

In our context, with X
⋃

Y , we will indicate the ordered set of items, w.r.t. the total
order relation 	, contained in X or in Y .

Proposition 2. Let X , Y , Z be three itemsets s.t. X
⋂

Z = ∅ and Y
⋂

Z = ∅. If X 	
Y , then (X

⋃
Z) 	 (Y

⋃
Z).

Proposition 3. All subsets of a representative MG are also representative ones.

Proof. Let g be a representative MG and f its closure. Suppose, we have g1 ⊂ g and
g1 /∈ MGrepf1

where f1 = g′′
1

. Let g2 be the representative MG of f1 . Consequently,
g2 ≺ g1 . Since, g′′

1
= g′′

2
, then, according to Lemma 1, we have (g1

⋃
(g \ g1 ))′′ = (g2⋃

(g \ g1 ))′′ and, hence, g′′ = (g2

⋃
(g \ g1 ))′′. Let g3 be equal to (g2

⋃
(g \ g1 )).
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According to the second case in Definition 5 and to Proposition 2, we have g3 ≺ g since
g2 ≺ g1 , g2

⋂
(g \ g1 ) = ∅ and g1

⋂
(g \ g1 ) = ∅. If g3 is an MG, then g can not

be a representative MG what is in contradiction with the initial assumption that g is a
representative MG. If g3 is not an MG, then it exists an MG g4 s.t. g4 ⊂ g3 and g′′

4
= g′′

3
.

Since Card(g4 ) < Card(g3 ), then g4 ≺ g3 (according to the first case in Definition 5)
and, hence, g4 ≺ g. This result is also in contradiction with the starting assumption.
Thus, we can conclude that each subset of g is necessarily a representative MG. �

Hence, according to Proposition 3, if f is an CI, then MGsucf =MGrepf

⋃
MGcanf

= {g ∈ MGf | ∀ g1 ⊂ g, g1 ∈ MGrepf1
where f1 = g′′

1
}.

Thanks to Proposition 4, given below with its proof, we show that the succinctness
of MGs is an anti-monotone constraint. Hence, the set MGsucK is an order ideal in
(2I , ⊆).

Proposition 4. (ANTI-MONOTONE CONSTRAINT) Let g be an itemset. g fulfills the
following two properties:

1. If g ∈ MGsucK, then ∀ g1 s.t. g1 ⊂ g, g1 ∈ MGsucK.
2. If g /∈ MGsucK, then ∀ g1 s.t. g1 ⊃ g, g1 /∈ MGsucK.

Proof.
1. g ∈ MGsucK =⇒ ∀ g1 s.t. g1 ⊂ g, g1 ∈ MGrepf1

where f1 = g′′
1

(according to
Definition 6.) =⇒ ∀ g1 s.t. g1 ⊂ g, g1 ∈ MGsucf1

(since MGrepf1
⊆ MGsucf1

.)
=⇒ ∀ g1 s.t. g1 ⊂ g, g1 ∈ MGsucK (since MGsucf1

⊆ MGsucK.).
2. g /∈ MGsucK =⇒ ∀ g1 s.t. g ⊂ g1 , g1 ∈ MGredf1

where f1 = g′′
1

(indeed, g1

has at least a non-representative subset, namely g, since the latter is not a succinct
MG and, hence, is not a representative one.) =⇒ ∀ g1 s.t. g ⊂ g1 , g1 /∈ MGsucf1

(according to Definition 6, g1 can not be both redundant and succinct at the same
time.) =⇒ ∀ g1 s.t. g ⊂ g1 , g1 /∈ MGsucK (we have g1 /∈ MGsucf1

. In addition, g1

/∈ (MGsucK\MGsucf1
) since the closure of g1 is unique and is equal to f1 .). �

Since the frequency constraint is also anti-monotone, it is easy to show that the set
FMGsucK, of the succinct frequent MGs extracted from the context K, is also an
order ideal in (2I , ⊆). This interesting property allowed us to propose an efficient algo-
rithm to extract the SSMG according to the definition of Dong et al. (see [20] for more
details).

3.2 Limitations of the Work of Dong et al.

Starting form Definition 7, the main facts that can be pointed out from the work of Dong
et al. can be unraveled by the following claims [18]:

Claim 1: The cardinality of an SSMG is insensitive to the considered total order rela-
tion 	, i.e., whatever the total order relation, the number of canonical MGs is the
same. Recall that the number of representative ones is exactly equal to that of CIs,
as stated by Proposition 1.

Claim 2: A SSMG is an exact representation of the MG set, i.e., if g is a redundant
MG, then g can be inferred from the SSMG without loss of information. To do
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so, for each γ-equivalence class, Dong et al. propose to infer its redundant MGs
by replacing the subsets (one or more) of its succinct MGs by non-representative
MGs having, respectively, the same closures as those of the replaced subsets [18].
For example, the redundant MG “bdg”, extracted from the context sketched by
Table 1, can be inferred from the succinct MG “adg” by replacing its subset “ad”
by “bd” (both MGs “ad” and “bd” have the same closure).

In what follows, we show that, according to the current definition of the SSMG, the
cardinality of the latter closely depends on the selected total order relation (contrary to
the statement of Claim 1). Furthermore, we give an example where the SSMG presents
a loss of information (contrary to the statement of Claim 2).

As mentioned in the previous subsection, Dong et al. claimed that the shift of the
total order relation 	 does not affect the size of the associated SSMG [18]. Such a claim
seems to hold when confronted to the extraction context depicted by Table 1. Indeed,
for different total order relations (e.g., the alphabetic order, the ascending/descending
support order, etc.), we obtain the same number of succinct minimal generators (MGs).
It is the same for the running example used in the proper paper of Dong et al. (see [18]).
However, if we consider the extraction context sketched by Table 3 (Left), we find that
their claim is erroneous. Indeed, as shown by Table 3 (Right), the total number of
succinct MGs is equal to 23 if the alphabetic order is of use. Whereas, it is equal to 22
in the case of the ascending support order, and 25 in the case of the descending support
order. Hence, the number of the succinct MGs closely depends on the chosen total order
relation. The difference occurs within the γ-equivalence class number 11 (shown with
bold letters). The other γ-equivalence classes do not contain any redundant MGs and,
hence, are not of interest in our explanations.

Furthermore, if we adopt the ascending support order as a total order relation 	,
then we find that, given the succinct MGs, it is not possible to infer all redundant
ones. Indeed, from the succinct MGs “ea” and “acd”, only both redundant MGs “adf ”
and “cdf ” can be inferred by replacing the subset “ac” of “acd” by the MGs having
its closure, i.e., “af ” and “cf ”. Hence, for example, the redundant MG “edf ” will be
missed if we need to infer all MGs.

Even if the first “bug” (i.e., that related to the size of the different SSMGs associated
to a given extraction context) can be regarded as not having a dramatic consequence,
fixing the second one is of paramount importance, since the need for exact compact
representation is always conditioned by the ability to discover all redundant informa-
tion without looking back at the extraction context. Hence, aiming to ensure the com-
pleteness of the derivation of redundant MGs, we introduce, in the next section, new
definitions allowing to go beyond the limitations of the work proposed by Dong et al.

3.3 Succinct System of Minimal Generators: New Definitions

The set MGf of the MGs associated to a given closed itemset (CI) f can be divided
into different equivalence classes thanks to a substitution process. To avoid confusion
with the γ-equivalence classes induced by the closure operator ′′, the substitution-based
ones will be denoted σ-equivalence classes. The substitution process uses an operator
denoted Subst. This substitution operator is a partial one allowing to substitute a subset
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Table 3. (Left) An extraction context K′. (Right) The CIs extracted from K′ and for each one,
the corresponding MGs for different total order relations (the succinct MGs, according to the
definition of Dong et al., are indicated with bold letters).

a b c d e f
1
2
3
4
5
6
7
8
9

alphabetic order ascending support order descending support order

CI MGs CI MGs CI MGs
1
2 a a a a a a
3 b b b b b b
4 c c c c c c
5 d d d d d d
6 be e eb e be e
7 f f f f f f
8 ab ab ab ab ba ba
9 acf ac, af , cf acf ac, af , cf fac fa, fc, ac
10 ad ad ad ad da da
abcdef ae, abc, abd, abf,

acd, adf, bcf, bdf,
cdf, cef, def

eacbdf ea, ecf, edf, acb,
acd, abd, abf,
adf, cbf, cdf, bdf

bdface ae, bdf , bda, bfa,
bfc, bac, dfa, dfc,
dfe, dac, fce

12 bcde bc, bd, ce, de ecbd ec, ed, cb, bd bdce bd, bc, de, ce
13 bf bf bf bf bf bf
14 cd cd cd cd dc dc
15 df df df df df df
16 bef ef ebf ef bfe fe

of an itemset X , say Y , by another itemset Z belonging to the same γ-equivalence class
of Y (i.e., Y ′′ = Z ′′). This operator is then defined as follows:

Definition 8. (SUBSTITUTION OPERATOR) Let X , Y and Z be three itemsets s.t. Y
⊂ X and Y ′′ = Z ′′. The substitution operator Subst, w.r.t. X , Y and Z , is defined as
follows: Subst (X , Y , Z) = (X\Y )

⋃
Z .

To prove that X and Subst (X , Y , Z ) have the same closure, we need the following
lemma.

Lemma 2. [19] Let X and Y be two itemsets. X and Y verify the following property:
(X

⋃
Y )′′ = (X ′′ ⋃

Y ′′)′′.

Proposition 5. X and Subst (X , Y , Z ) belong to the same γ-equivalence class.

Proof. Let W be the result of Subst (X , Y , Z ), i.e., W = (X\Y )
⋃

Z . We will show
that X and W have the same closure.
Using Lemma 2, we have: X ′′ = ((X\Y )

⋃
Y )′′ = ((X\Y )′′

⋃
Y ′′)′′. Since Y ′′ =

Z ′′, then X ′′ = ((X\Y )′′
⋃

Y ′′)′′ = ((X\Y )′′
⋃

Z ′′)′′ = ((X\Y )
⋃

Z)′′ = W ′′.
Hence, X ′′ = W ′′. Thus, we can conclude that X and W necessarily belong to the
same γ-equivalence class. �

For each γ-equivalence class C (or equivalently, for each CI f ), the substitution op-
erator induces an equivalence relation on the set MGf of the MGs of f portioning it



Succinct System of Minimal Generators 89

into distinct σ-equivalence classes. The definition of a σ-equivalence class requires that
we redefine the notion of redundant MG under the substitution process point of view.
Indeed, according to the definition given by Dong et al. (see Definition 6), redundant
MGs are blindly pruned according to purely syntactic properties, only consisting in
checking the order of their subsets w.r.t 	, in their respective γ-equivalence classes.
Hence, we propose to incorporate a semantic part based on the actual concept of redun-
dancy.

Definition 9. (MINIMAL GENERATORS’ REDUNDANCY) Let g and g1 be two MGs
belonging to the same γ-equivalence class.

• g is said to be a direct redundant (resp. derivable) with respect to (resp. from) g1 ,
denoted g1 � g, if Subst (g1 , g2 , g3 ) = g where g2 ⊂ g1 and g3 ∈ MGK s.t. g′′

3
= g′′

2
.

• g is said to be a transitive redundant with respect to g1 , denoted g1 �+ g, if it
exists a sequence of n MGs (n ≥ 2), gen1 , gen2 , . . ., gen

n
, s.t. geni � gen

i+1 (i ∈
[1..(n-1)]) where gen1 = g1 and gen

n
= g.

Proposition 6. The substitution relations � and �+ have the following properties:
• The substitution relation � is reflexive, symmetric but not necessarily transitive.
• The substitution relation �+ is reflexive, symmetric and transitive.

The formal definition of a σ-equivalence class is then as follows:

Definition 10. (σ-EQUIVALENCE CLASS) The operator �+ induces an equivalence
relation on the set MGf , of the MGs associated to an CI f , portioning it into distinct
subsets called σ-equivalence classes. If g ∈ MGf , then the σ-equivalence class of g,
denoted by [g], is the subset of MGf consisting of all elements that are transitively
redundant w.r.t. g. In other words, we have: [g] = {g1 ∈ MGf | g �+ g1}.

The smallest MG in each σ-equivalence class, w.r.t. the total order relation 	, will
be considered as its succinct MG. While, the other MGs will be qualified as redundant
MGs.

The following pseudo-code offers a straightforward way to extract the different σ-
equivalence classes associated to an CI f . A σ-equivalence class will be denoted σ-
Equiv Class.

Function 1: σ-EQUIVALENCE CLASSES MINER

Input: The set MGf of the MGs associated to f .
Output: The σ-equivalence classes associated to f .
Begin1

S = MGf ;2

i = 0;3

While (S �= ∅) do4

i = i + 1;5

gs = min�(S ); /*gs is the smallest MG in S w.r.t. �.*/6

σ-Equiv Classi = {gs}
�

{g ∈ S | gs �+ g};7

S = S\σ-Equiv Classi ;8

return
�j≤i

j=1σ-Equiv Classj ;9

End10
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Example 7. Let us consider the extraction context depicted by Table 3, the ascending
support order as a total order relation 	 and the γ-equivalence class having for CI
“eacbdf ”. Using Function 1, the MGs associated to “eacbdf ” are divided as follows:

1. First, S = MGeacbdf = {ea, ecf, edf, acb, acd, abd, abf, adf, cbf, cdf, bdf} and i = 1.
“ea” is the smallest MG in S. Hence, σ-Equiv Class1 = {ea}

⋃
{g ∈ S | ea �+

g}. However, none MG can be deduced from “ea”. Thus, σ-Equiv Class1 = {ea}.
2. Second, S = S\σ-Equiv Class1 = {ea, ecf, edf, acb, acd, abd, abf, adf, cbf, cdf,

bdf}\{ea} = {ecf, edf, acb, acd, abd, abf, adf, cbf, cdf, bdf} and i = 2. “ecf ” is the
smallest one in S. Hence, σ-Equiv Class2 = {ecf}

⋃
{g ∈ S | ecf �+ g} = {ecf}⋃

{edf, acb, abd, abf, cbf, bdf}. Indeed, Subst (ecf , ec, ed) = edf ∈ MGeacbdf (ecf
� edf and, hence, ecf �+ edf ), Subst (ecf , ec, cb) = cbf ∈ MGeacbdf (ecf � cbf
and, hence, ecf �+ cbf ), Subst (cbf , cf , ac) = acb ∈ MGeacbdf (ecf �+ acb since
ecf � cbf and then, cbf � acb), etc.

3. Finally, S = S\σ-Equiv Class2 = {ecf, edf, acb, acd, abd, abf, adf, cbf, cdf, bdf}
\{ecf, edf, acb, abd, abf, cbf, bdf} = {acd, adf, cdf} and i = 3. “acd” is the smallest
MG in S. Hence, σ-Equiv Class3 = {acd}

⋃
{g ∈ S | acd �+ g} = {acd}

⋃
{adf,

cdf} since Subst (acd, ac, af ) = adf (acd � adf and, hence, acd �+ adf ) and
Subst (acd, ac, cf ) = cdf (acd � cdf and, hence, acd �+ cdf ).

In conclusion, MGeacbdf is divided into three σ-equivalence classes as follows (succinct
MGs are marked with bold letters): MGeacbdf = {ea}

⋃
{ecf , edf, acb, abd, abf, cbf,

bdf}
⋃

{acd, adf, cdf}. Note that “ecf” was not considered as a succinct MG according
to the initial definition that was introduced by Dong et al. since its subset “cf ” is not the
representative MG of its CI “acf ”. Hence, all MGs belonging to σ-Equiv Class2 can
not be inferred according to their definition, contrary to ours.

Example 8. For the same context, if we consider the descending support order as a
total order relation 	, then we will note that the SSMG, as formerly defined by Dong et
al., can even contain redundancy in comparison to our definition. Indeed, thanks to the
substitution operator Subst, MGbdface is divided as follows: MGbdface = {ae}

⋃
{bdf ,

bda, bfa, bfc, bac, dfe, fce}
⋃

{dfa, dfc, dac}. The storage of the MGs “bda” and
“bfa” is then redundant and useless since they can simply be inferred starting from the
succinct MG “bdf ” (bdf �+ bda and bdf �+ bfa). Indeed, Subst (bdf , bd, bc) = bfc,
Subst (bfc, fc, fa) = bfa, Subst (bfa, fa, ac) = bac and finally Subst (bac, bc, bd) =
bda.

Proposition 7. The different σ-equivalence classes associated to a given CI f fulfill
the following properties:

–
⋃i≤Card(MGsucf )

i=1 σ-Equiv Class
i

= MGf .
– ∀ i, j ∈ [1... Card(MGsucf )] s.t. i �= j, σ-Equiv Class

i

⋂
σ-Equiv Classj = ∅.

Using the new definitions of both succinct and redundant MGs (cf. Definition 9 and
Definition 10), we can now define the succinct system of minimal generators (SSMG)
in its new form as follows:

Definition 11. (SUCCINCT SYSTEM OF MINIMAL GENERATORS: NEW DEFINITION)
A succinct system of minimal generators (SSMG) is a system where only succinct MGs
are retained among all MGs associated to each CI.
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Thanks to the new consideration of the concept of redundancy within MGs, Proposition
8 and Proposition 9 make it possible to correct the claims of Dong et al. [18].

Proposition 8. Whatever the total order relation 	, the substitution operator Subst
maintains unchanged the elements belonging to each σ-equivalence class.

Proof. Let 	1 and 	2 be two different total order relations. Let f be an CI and MGf

be the set of its associated MGs. Using 	1 , MGf will be divided into σ-equivalence
classes. Let σ-Equiv Class�1

be one of them and gs1
be its succinct MG (i.e., the

smallest one in σ-Equiv Class�1
w.r.t. 	1 ). σ-Equiv Class�1

can be represented by a
tree, denoted T�1

. The root of T�1
contains the succinct MG gs1

. In this tree, a node
N , which represents an MG g, points to a node N1 , which represents an MG g1 , if g �
g1 . Hence, from whatever node in T�1

, we can access the remaining nodes as follows:
we move downward from the node N to the node N1 using the relation g � g1 and
conversely, from N1 to N using the dual relation g1 � g. Indeed, if Subst (g, g2 , g3 ) =
g1 where g2 ⊂ g and g3 ∈ MGK s.t. g′′

3
= g′′

2
, then also Subst (g1 , g3 , g2 ) = g since the

operator � is symmetric (cf. Proposition 6).
Now, consider the set σ-Equiv Class�1

ordered w.r.t. the second total order relation
	2 . The obtained new set will be denoted σ-Equiv Class�2

and its associated succinct
MG will be denoted gs2

. Hence, if we transform the tree T�1
in a new one, denoted

T�2
and rooted in gs2

, then we are able to reach all remaining MGs contained in
σ-Equiv Class�2

thanks to the substitution application as explained above. Thus, the
change of the total order relation does not affect the content of the σ-Equiv Class�1

since it does not involve the deletion of any node in T�1
.

Furthermore, this change does not augment σ-Equiv Class�2
by any another re-

dundant MG. Indeed, suppose that an MG denoted gnew, not already belonging to
σ-Equiv Class�1

, will be added to σ-Equiv Class�2
once we shift the total order re-

lation from 	1 to 	2 (i.e., gs2
�+ gnew but gs1

�
+ gnew). Since, gs1

�+ gs2
(gs2

∈
σ-Equiv Class�1

) and gs2
�+ gnew, then gs1

�+ gnew. Indeed, the relation �+ is tran-
sitive (cf. Proposition 6). Hence, gnew should belong to σ-Equiv Class�1

(according
to Definition 10) what is in contradiction with the starting assumption (g1 �

+ gnew).
Thus, g2 �

+ gnew.
Therefore, we can conclude that the elements belonging to σ-Equiv Class�2

are
exactly the same than those contained in σ-Equiv Class�1

, ordered w.r.t. 	2 instead
of 	1 . �

Example 9. If we scrutinize both Example 7 and Example 8, we note that σ-Equiv
Class1 , σ-Equiv Class2 and σ-Equiv Class3 are exactly the same for both examples.
However, they are sorted according to the ascending support order and to the descending
support order, respectively.

According to Proposition 8, the number of succinct MGs associated to each CI f (i.e.,
Card(MGsucf )) is then equal to the number of σ-equivalence classes induced by the
substitution operator, independently of the chosen total order relation. Hence, the car-
dinality of the set MGsucK, containing the succinct MGs that can be extracted from
the context K, remains unchanged even if we change the total order relation. In other
words, the different SSMGs associated to an extraction context have the same size.
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Proposition 9. The SSMG as newly defined ensures the inference of each redundant
MG g.

Proof. Since g is a redundant MG, then g is not the smallest one in its σ-equivalence
class. Hence, according to the definition of a σ-equivalence class (see Definition 10),
it necessarily exists a succinct MG gs belonging to the SSMG whose a substitution
process certainly leads to g (gs �+ g) since the number of MGs belonging to each
σ-equivalence class is finite. �
Proposition 9 states that the new SSMG is an exact representation of the MG set.

4 Related Work

In this part, we will mainly concentrate on the concept of clone items [21,22], since it
is closely related to our work. Clone items can be roughly considered as a restriction
of the SSMG to γ-equivalence classes where two or more items have the same closure,
i.e., to MGs of size one (like the couple (a, b) and the couple (d, e) of the extraction
context depicted by Table 1). The authors [21,22] show that, for a couple like (a, b),
items a and b present symmetries, which can be seen as redundant information since for
all association rules containing a in the premise there exists the same association rules
where “a” is replaced by “b” [22]. Thus, they propose to ignore all rules containing
“b” but not “a” without loss of information [22]. This reduction process was applied
to the Guigues-Duquenne basis [23] of exact implications. Association rules of this
basis present implications between pseudo-closed itemsets [23] in the premise part, and,
closed itemsets in the conclusion part. Note that clone items when applied to pseudo-
closed itemsets are called P-clone items [21].

5 Experimental Study

In order to evaluate the utility of our approach, we conducted series of experiments on
four benchmark datasets, frequently used by the data mining community4. Character-
istics of these datasets are summarized by Table 4. Hereafter, we use a logarithmically
scaled ordinate axis for all curves.

Figure 1 shows the effect of the succinct system of minimal generators (SSMG) by
comparing the number of the succinct frequent minimal generators (MGs) vs. that of
all frequent MGs. For both the PUMSB and the MUSHROOM datasets, a large part of
the frequent MGs proves to be redundant. Indeed, for PUMSB (resp. MUSHROOM), in
average 52.27% (resp. 50.50%) of the frequent MGs are redundant, and the maxi-
mum rate of redundancy reaches 64.06% (resp. 53.28%) for a minsupp value equal
to 65% (resp. 0.20%). It is important to mention that for the PUMSB dataset, the re-
dundancy is caused by the fact that there are some couples of items having the same
closure (like “a” and “b” of the extraction context sketched by Table 1). Hence, using
only an item, instead of both items forming each couple, was sufficient to eliminate
all redundancy, which is not the case for MUSHROOM. Noteworthily, in average, the

4 These benchmark datasets are downloadable from: http://fimi.cs.helsinki.fi/data.
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Table 4. Dataset characteristics

Dataset Number of items Number of objects Average object size minsupp interval (%)
PUMSB
MUSHROOM
CONNECT
T40I10D100K

number of succinct (resp. all) frequent MGs per γ-equivalence class, is equal to 1.00
(resp. 2.24) for the PUMSB dataset, while it is equal to 1.06 (resp. 2.13) for the
MUSHROOM dataset. Such statistics explain why the curve representing the number of
frequent closed itemsets (CIs) is almost overlapped with that depicting the number of
succinct frequent MGs.

For the CONNECT dataset and although it is widely tagged to be a “dense” one, each
frequent CI extracted from this dataset has only a unique frequent MG and, hence,
there are no redundant ones. It is the same for the “sparse” T40I10D100K dataset.
Hence, it is worth noting that the reduction ratio from the number of all frequent MGs
to that of succinct ones can be considered as a new measure for an improved dataset
classification, as mentioned by Dong et al. [18].

Obtained results prove that the SSMG allows to almost reach the ideal case: a unique
succinct MG per γ-equivalence class.
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Fig. 1. The number of frequent CIs (denoted FCIs), of frequent MGs (denoted FMGs) and of
succinct frequent MGs (denoted succinct FMGs)

6 Conclusion and Future Work

In this paper, we studied the principal properties of the succinct system of minimal gen-
erators (SSMG) as formerly defined by Dong et al. Once the limitations of the current



94 T. Hamrouni, S. Ben Yahia, and E. Mephu Nguifo

definition pointed out, we introduced a new one aiming to make of the SSMG an exact
representation of the minimal generator (MG) set, on the one hand, and, on the other
hand, its size independent from the adopted total order relation. After that, we discussed
the main related work. Finally, an experimental study confirmed that the application of
the SSMG makes it possible to get, in average, almost as many closed itemsets as suc-
cinct MGs, thanks to the elimination of an important number of redundant ones. It is
important to mention that our approach can easily be applied when negative items are
considered, as well as within the disjunctive search space where itemsets are character-
ized by their disjunctive support, instead of the conjunctive one [24].

As part of future work, we plan to use the SSMG in an in-depth structural analysis of
dataset characteristics. In this setting, we propose to set up a sparseness measure based
on the compactness rate offered by the SSMG. Such measure can be used to increase
the extraction efficiency by helping to choose the most suitable algorithm according to
the data under treatment. The extension of the SSMG to the framework of generic asso-
ciation rules is also an interesting issue. As a first attempt, the work we proposed in [25]
gave very encouraging results. Furthermore, we think that the application of the SSMG
to some real-life domains like biological applications will be of an added value for users.

Acknowledgements. We are grateful to the anonymous reviewers for their useful re-
marks and suggestions. This work is partly supported by the French-Tunisian project
PAI CMCU 05G1412.
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Abstract. The notion of an affine ordered set is specialized to that of
a complete affine ordered set, which can be linked to attribute-complete
many-valued contexts and is categorically equivalent to the notion of a
closed system of equivalence relations (SER). This specialization step
enables us to give conditions under which the complete affine ordered
set can be interpreted as the set of congruence classes labeled with the
congruence relation they stem from yielding a coordinatization theorem
for affine ordered sets.

1 Introduction

In [KS04] the notion of affine ordered sets is introduced to provide an order-
theoretic, geometric counterpart of (simple) many-valued contexts. Here we spe-
cialize the notion of an affine ordered set to that of a complete affine ordered
set, which is categorically equivalent to attribute-complete many-valued contexts
and to closed systems of equivalence relations (SER). This specialization step
enables us to add an algebraic aspect, that is, to give conditions under which the
complete affine ordered set can be interpreted as the set of congruence classes of
an algebra labeled with the congruence relation they stem from. This approach
can be seen in the tradition of coordinatization theorems in geometry where a
prominent example is the coordinatization of affine planes via the Theorem of
Desargues.

In Section 2 we introduce the notions of attribute-complete many-valued con-
texts and closed SERs and insinuate the correspondence between the two. The
order-theoretic geometric counterpart is introduced as complete affine ordered set
in Section 3, and Section 4 shows the categorical equivalence between complete
affine ordered sets and closed SERs. The second part of the paper, consisting of
Section 5, deals with the question how to coordinatize closed SERs and complete
affine ordered sets.

2 Attribute-Complete Many-Valued Contexts and Closed
Systems of Equivalence Relations

Data tables can be formalized as many-valued contexts as it is common in Formal
Concept Analysis [GW99]. Many-valued contexts are also known as Chu Spaces
[Pr95] or Knowledge Representation Systems [Pa91].
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Definition 1 (many-valued context). A (complete) many-valued context is
a structure K := (G, M, W, I), where G is a set of objects, M is a set of attributes,
W is a set of values and I ⊆ G × M × W is a ternary relation, where for every
(g, m) ∈ G×M there exists a unique w ∈ W with (g, m, w) ∈ I; in the following
m will be considered as a function from G to W via m(g) := w.

We call an attribute m ∈ M an id attribute if for any two objects g1, g2 ∈ G
the values of g1 and g2 regarding to m are different (i.e. m(g1) �= m(g2)). The
following definition provides a notion of dependency between attributes of a
many-valued context.

Definition 2 (functional dependency). If M1 and M2 are sets of attributes
of a many-valued context (G, M, W, I), we call M2 functionally dependent on
M1 (in symbols: M1 → M2) if for all pairs of objects g, h ∈ G

∀m1 ∈ M1 : m1(g) = m1(h) ⇒ ∀m2 ∈ M2 : m2(g) = m2(h).

If M1 → M2 and M2 → M1, the sets of attributes, M1 and M2, are called
functionally equivalent, denoted by M1 ↔ M2.

For a map f : A → B the kernel of f is defined as the equivalence relation
ker(f) := {(a, b) ∈ A2 | f(a) = f(b)}. It is easily seen that M1 → M2 holds
if and only if

⋂
m1∈M1

ker(m1) ⊆
⋂

m2∈M2
ker(m2). Accordingly, m1 and m2

are functionally equivalent if and only if
⋂

m1∈M1
ker(m1) =

⋂
m2∈M2

ker(m2).
Many-valued contexts where any two functionally equivalent attributes are equal
will be called simple.

Definition 3 (attribute-complete many-valued context). A many-valued
context K := (G, M, W, I) is called attribute-complete if it is simple, has an id
attribute, and

∀N ⊆ M ∃m ∈ M : N ↔ {m}.

Following the main scheme from [KS04], we assign a system of equivalence re-
lations to attribute-complete many-valued contexts in order to describe them
geometrically and order-theoretically in a later step. We recall the basic defin-
itions for systems of equivalence relations from [KS04]. We denote the identity
relation on the set X by ΔX := {(x, x) | x ∈ X}.

Definition 4 (system of equivalence relations). We call E := (D, E) a
system of equivalence relations (SER), if D is a set and E is a set of equivalence
relations on D. If d ∈ D and θ ∈ E, we denote the equivalence class of d by
[d]θ := {d′ ∈ D | d′θd}. If ΔD ∈ E we will also call (D, E) a SER with identity
relation.

Every attribute m ∈ M induces a partition on the object set via the equivalence
classes of ker(m). So we can regard a simple many-valued context as a set of
partitions induced by its attributes. Every block of a partition corresponds to
the set of objects with a certain value with respect to a certain attribute. The
following definition captures attribute-complete many-valued contexts.
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Definition 5 (closed SER). Let (G, E) be a SER with identity relation. Then
we call (G, E) a closed SER if E is meet-closed which means that E forms a
closure system of equivalence relations.

To every given closed SER E := (D, E) we can assign a simple many-valued
context K(E) := (D, E, W, I), where W := {[d]θ | d ∈ D, θ ∈ E} and I :=
{(d, θ, w) ∈ D × E × W | w = [d]θ}. Obviously, K(E) is attribute-complete.
On the other hand we can assign, as described above, a closed SER to every
attribute-complete many-valued context. We define E(K) := (G, {ker(m) | m ∈
M}). We observe that, for every attribute-complete many-valued context K, we
have K(E(K)) 
 K and for every closed SER E we have E(K(E)) = E.

If we have such a closed system of equivalence relations we can assign the
lattice of its labeled equivalence classes to it. This structure, called complete
affine ordered set, is axiomatized in the next chapter.

3 Complete Affine Ordered Sets

In [KS04] the labeled equivalence classes of a system of equivalence relations
containing the identity relation are characterized order-theoretically using the
notion of an affine ordered set. We recall this basic definition which we will
specialize in the following yielding a corresponding notion to a closed SER.

Definition 6 (affine ordered set). We call a triple A := (Q, ≤, ‖) an affine
ordered set, if (Q, ≤) is a partially ordered set, ‖ is a equivalence relation on Q,
and the axioms (A1) - (A4) hold. Let A(Q) := Min(Q, ≤) denote the set of all
minimal elements in (Q, ≤) and A(x) := {a ∈ A(Q) | a ≤ x}.

(A1) ∀x ∈ Q : A(x) �= ∅
(A2) ∀x ∈ Q ∀a ∈ A(Q)∃!t ∈ Q : a ≤ t ‖ x
(A3) ∀x, y, x′, y′ ∈ Q : x′ ‖ x ≤ y ‖ y′ & A(x′) ∩ A(y′) �= ∅ ⇒ x′ ≤ y′

(A4) ∀x, y ∈ Q ∃x′, y′ ∈ Q : x � y & A(x) ⊆ A(y)
⇒ x′ ‖ x & y′ ‖ y & A(x′) ∩ A(y′) �= ∅ & A(x′) � A(y′).

The elements of A(Q) are called points and, in general, elements of Q are called
subspaces. We say that a subspace x is contained in a subspace y if x ≤ y.

For a point a and a subspace x we denote by π(a|x) the subspace which contains
a and is parallel to x. Axiom (A2) guarantees that there is exactly one such
subspace. For every x ∈ Q we observe that θ(x) := {(a, b) ∈ A2 | π(a|x) = π(b|x)}
is an equivalence relation on the set of points.

Homomorphisms between ordered sets with parallelism are defined as follows:

Definition 7 (homomorphism for ordered sets with parallelism). For
ordered sets with parallelism A = (Q, ≤, ‖) and A0 = (Q0, ≤0, ‖0) we call a
mapping α : Q → Q0 a homomorphism if

• α maps points to points,
• α is order preserving (i.e. x ≤ y =⇒ α(x) ≤0 α(y)),
• α preserves the parallelism (i.e. x ‖ y =⇒ α(x) ‖0 α(y)).
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By Hom(A, A0) we denote the set of all homomorphisms from A to A0.

From [KS04] we know that we can assign to any affine ordered set A a SER with
identity relation via E(A) := (Min(Q, ≤), {θ(x)|x ∈ Q}) and to any SER with
diagonal E an affine ordered set via A(E) := ({([x]θ, θ) | θ ∈ E x ∈ D}, ≤′, ‖′)
where ≤′ is defined by ([x]θ1, θ1) ≤′ ([y]θ2, θ2) : ⇐⇒ [x]θ1 ⊆ [y]θ2 & θ1 ⊆ θ2

and ‖′ is defined by ([x]θ1, θ1) ‖′ ([y]θ2, θ2) : ⇐⇒ θ1 = θ2.
For any ordered set P we denote by P⊥ the order which results by adding a

bottom element, also called the lifting of P . Given an affine ordered set A :=
(Q, ≤, ‖), we will add as an axiom that (Q, ≤)⊥ is a complete lattice to assure
that the SER E(A) is closed, i.e. the set {θ(x) | x ∈ Q} forms a closure system.
Definition 8 (complete affine ordered set). We call an affine ordered set
C := (Q, ≤, ‖) complete affine ordered set if (Q, ≤)⊥ forms a complete lattice.

As an illustration we give an example for a closed SER and its associated affine
ordered set.

Example 1. We construct an affine ordered set from the following relations on a
set U := {a, b, c, d, e}:

• �U

• θ1 defined by the classes {a} and {b, c, d, e}
• θ2 defined by the classes {a, b}, {c}, and {d, e}
• θ3 defined by the classes {b, c} plus singletons
• θ4 defined by the classes {d, e, } plus singletons
• ∇U

The lifting of the constructed affine ordered set is a lattice .
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��������

�������	

�U

��������

��������

Fig. 1. Set of Equivalence Relations ordered via Set Inclusion

Note that for affine ordered sets we have x ≤ y ⇐⇒ A(x) ⊆ A(y) & θ(x) ⊆
θ(y).

Proposition 1. Let A := (Q, ≤, ‖) be an affine ordered set where (Q, ≤)⊥ is a
lattice and let xi ∈ Q for i ∈ I. Then we have A(

∧
I xi) =

⋂
I A(xi).

Proof. Let z :=
∧

I xi. We know that A(z) ⊆
⋂

I A(xi). Assume that there ex-
ists a z∗ ∈

⋂
I A(xi) with z∗ /∈ A(z). Assume that A(π(z∗|z)) ⊆

⋂
I A(xi). This
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Fig. 2. Lifted Affine Ordered Set

contradicts the assumption that (Q, ≤) is a lattice, since π(z∗|z) would be a
not comparable to z but also a lower bound of the xi. So we have to assume
A(π(z∗|z)) � A(x) ∩ A(y) which contradicts θ(z) ⊆

⋂
I θ(xi). ��

Complete affine ordered sets exhibit a natural connection between parallelism
and the meet of the lattice.

Proposition 2. For a complete affine ordered set C := (Q, ≤, ‖) we have

(P1) xi ‖ yi for all i ∈ I &
⋂

i∈I A(xi) �= ∅ &
⋂

i∈I A(yi) �= ∅
=⇒

∧
i∈I xi ‖

∧
i∈I yi.

Proof. The premise yields elements a, b ∈ A(Q) with a ∈
⋂

i∈I A(xi) and b ∈⋂
i∈I A(yi). By (A3) we get π(b|

∧
i∈I xi) ≤

∧
i∈I yi since π(b|

∧
i∈I xi)

‖
∧

i∈I xi ≤ xi0 ‖ yi0 and b ≤ π(b|
∧

i∈I xi) and b ≤ yi0 . Exchanging the roles
of the xi and the yi we dually get π(a|

∧
i∈I yi) ≤

∧
i∈I xi. But now assume

π(b|
∧

i∈I xi) <
∧

i∈I yi. This would imply that
∧

i∈I yi ∦
∧

i∈I xi and therefore
we would get π(a|

∧
i∈I yi) <

∧
i∈I xi. But this yields a contradictory configura-

tion as depicted in Figure 3. Therefore we have π(b|
∧

i∈I xi) =
∧

i∈I yi which
completes our proof. ��

4 The Correspondence between Closed SERs and
Complete Affine Ordered Sets

In [KS04] it is shown that to any affine ordered set A = (Q, ≤, ‖) the functor E
assigns a SER with identity relation via E(A) := (Min(Q, ≤), {θ(x)|x ∈ Q}) to
A. Conversely, for a SER with identity relation E = (D, E) an affine ordered set
A(E) can be constructed as follows:

– take the labeled equivalence classes Q := {([x]θ, θ)|x ∈ D , θ ∈ E} as set of
subspaces of the affine ordered set
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Fig. 3. Contradictory configuration for I = {1, ..., n}

– define the order ≤′ on Q as ([x]θ1, θ1) ≤′ ([y]θ2, θ2) : ⇐⇒ [x]θ1 ⊆ [y]θ2 &
θ1 ⊆ θ2

– define a relation ‖′ on the set of equivalence classes as ([x]θ1, θ1) ‖′ ([y]θ2, θ2) :
⇐⇒ θ1 = θ2

Theorem 2 in [KS04] includes the assertion that the functors E and A (extended
to the respective homomorphisms) establish a categorical equivalence between
SERs with diagonal and affine ordered sets. In the following we will show that
these functors also yield a categorical equivalence between the category of closed
SERs and the category of complete affine ordered sets.

Theorem 1. The category of closed SERs and the category of complete affine
ordered sets are equivalent.

Proof. Since we know already that the category of affine ordered sets and the
category of SERs with identity are equivalent it remains to show that the functors
E and A move complete affine ordered sets to closed SERs and vice versa. In
the following let C := (Q, ≤, ‖) be a complete affine ordered set. Firstly, we show
that E(C) = (E, D) is closed. Since we know that it contains the identity we
have to show that D is a closure system. Let R ⊆ Q. Then we define MR :=
{θ(x) | x ∈ R}. We want to show that

⋂
MR ∈ E(C). For this we construct

an equivalence relation θ(z) and prove that θ(z) =
⋂

MR. Let a ∈ A(Q) be
an arbitrary but fixed point of C. We define z :=

∧
x∈R π(a|x). First, we show

that θ(z) ⊆
⋂

MR. For any x ∈ R we have that z ≤ π(a|x). This implies that
θ(z) ⊆ θ(π(a|x)) = θ(x). Second, we show that

⋂
MR ⊆ θ(z). Let (b, c) ∈ θ(x)

for all x ∈ R. Then we have π(a|x) ‖ π(b|x) = π(c|x) for all x ∈ R. Since the⋂
x∈R π(a|x) ⊇ {a} and

⋂
x∈R π(b|x) ⊇ {b, c} we can use (P1) to conclude that

z =
∧

x∈R π(a|x) ‖
∧

x∈R π(b|x) =
∧

x∈R π(c|x). But this shows that (b, c) ∈ θ(z).
For the other direction we have to show that A(E) is a complete affine ordered
set for a closed SER E := (E, D). We know already that A(E) is an affine
ordered set. So it remains to show that A(E)⊥ := ({([x]θ, θ) | θ ∈ D}, ≤′, ‖′)⊥
forms a complete lattice. We can consistently interpret ⊥ as (∅, ∅). Let S :=
{([x]θ, θ) | θ ∈ E}∪{(∅, ∅} and let R ⊆ S. By π1 and π2 we denote the projections
on the first and second coordinate. We define

∧
R := (

⋂
π1(R),

⋂
π2(R)). We
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have to show that
∧

R ∈ S. But since D is a closure system
⋂

π2(R) ∈ D having⋂
π1(R) as a class. ��

5 Coordinatization

In this section we give characterizations for the previously studied structures to
be coordinatizable, that is, we characterize those structures whose carrier/point
set consistently can be seen as the carrier set of an algebra.

5.1 Coordinatization of Closed SERs

At first, we investigate under which conditions a closed SER E = (A, D) can
be coordinatized, that means, under which conditions there exists an algebra
A := (A, (f)I) with Con(A) = D.

In the context of a SER E we define the set of dilations Δ(E) of the SER as
all functions mapping points to points and respecting all equivalence relations in
E (a map δ ∈ AA respects an equivalence relation R on A if for all (a, b) ∈ R we
have (δ(a), δ(b)) ∈ R), that is, Δ(E) := {δ ∈ AA | δ respects all E ∈ D}. What
makes dilations so interesting is the fact that congruence relations can already
be characterized by their compatibility with unary polynomial functions. The
set of all unary polynomial functions of an algebra A is denoted by Δ(A).

Proposition 3 ([Ih93], Theorem 1.4.8). Let A := (A, (f)I) be an algebra
and θ ∈ EqA. Then θ ∈ Con(A) if and only if θ respects all δ ∈ Δ(A).

Now it is easy to see that the dilations of a closed SER subsume the unary
polynomial functions of a coordinatizing algebra if it exists.

Proposition 4. Let A := (A, (f)I) coordinatize E := (A, D). Then Δ(A) ⊆
Δ(E).

Proof. We get a well known Galois connection between the set EqA of all equiva-
lence relations on a set A and the set of all unary operations Op1(A) on that same
set if we define the relation I ⊆ EqA×Op1(A) via EIδ ⇐⇒ δ respects E. Since
if A := (A, (f)I) coordinatizes E by Proposition 3 we have Δ(A)I = Con(A),
and since ·II is a closure operator we get Δ(A) ⊆ Δ(A)II = Δ(E).

The following proposition gives a constructive view on the principal congruence
relations of an algebra which will be useful in the proof of our characterization
theorem for closed SERs.

Proposition 5. Let A := (A, (f)I), let θ(a, b) ∈ Con(A) denote the least con-
gruence relation θ with (a, b) ∈ θ, and let Δ(A) denote the set of all unary poly-
nomial functions of A. Then θ(a, b) is the reflexive, symmetric, and transitive
closure of

Δ(a, b) := {(δa, δb) | δ ∈ Δ(A)}.
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The next theorem gives a characterization of coordinatizable closed SERs. Note
that other characterizations of the set of congruence relations of an algebra are
known, e.g. compare [Ih93], p. 56, Theorem 3.4.5. Before presenting our char-
acterization which aims at providing some analogies to Theorem 3.5 in [Wi70]
(where a geometry is coordinatized by the (not labeled) congruence classes of
an algebra), we need one more definition:

Definition 9. Let A be a set, let B ⊆ A, and let Δ be a set of maps from
A to A. Then we define a relation ≡ ⊆ A × A such that for a, b ∈ A we have
a ≡ b mod (B, Δ) if and only if there exist δi ∈ Δ for i = 0, ..., n with a ∈
δ0(B) & b ∈ δn(B) & δi(B) ∩ δi+1(B) �= ∅ for i ∈ {1, ..., n − 1}.

Theorem 2. Let E = (A, D) be a closed SER. Then there exists an algebra
A := (A, (f)I) with Con(A) = D if and only if

(E1) (c, d) ∈ θ(a, b) ⇐⇒ c ≡ d mod ({a, b}, Δ(E))
(E2) [(a, b) ∈ θ ⇒ θD(a, b) ⊆ θ] ⇐⇒ θ ∈ D.

A relation R which fulfills the left hand side of the equivalence (E2) is called
one-closed with respect to the closure operator θD. Then condition (E2) can be
understood as saying that a one-closed relation is already closed.

Proof. “⇒”: Let A := (A, (f)I) be an algebra with Con(A) = D and let (c, d) ∈
θ(a, b). We will show that the conditions (E1) and (E2) hold. Since θ(a, b) is
the least congruence relation in Con(A) containing (a, b), we know by Proposi-
tion 5 that θ(a, b) is the reflexive, transitive, and symmetric closure of Δ(a, b).
Therefore there exist mappings δ1, ..., δn ∈ Δ(A) with δ0(a) = c, δn(b) = d, and
δi ∩ δi+1 �= ∅ and, using Proposition 4, we have c ≡ d mod ({a, b}, Δ(E)), which
verifies condition (E1). To verify condition (E2), let θ be one-closed in Con(A).
Now assume θ /∈ Con(A). Then there exist (aj , bj) ∈ θ for j = 1, . . . , n such that
for some operation f of A with arity n we have (f(a1, . . . , an), f(b1, . . . , bn)) /∈ θ.
But let us consider the unary polynomial functions Γi : A → A for i = 1, . . . , n
where Γi(x) := f(b1, . . . , bi−1, x, ai+1, . . . , an). We get

Γ1(a1) = f(a1, a2, a3, . . . , an)
θ(a1, b1) Γ1(b1) = f(b1, a2, a3, . . . , an)
= Γ2(a2) = f(b1, a2, a3, . . . , an)
θ(a2, b2) Γ2(b2) = f(b1, b2, a3, . . . , an)

...
θ(an, bn) Γn(bn) = f(b1, . . . , bn−1, bn).

Since θ is one-closed, we receive θ(ai, bi) ⊆ θ for i = 1, . . . , n, and therefore, it
follows that (f(a1, . . . , an), f(b1, . . . , bn)) ∈ θ, a contradiction.
“⇐”: Now let E = (A, D) be a closed SER satisfying condition (E1) and (E2).
We will show that D = Con(A) for A := (A, Δ(E)). By definition of Δ(E)
all relations in D are congruence relations of the constructed algebra, that is,
D ⊆ Con(A). It remains to show that D is “sufficiently large”. For this we
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deduce that a congruence relation fulfills the left side of the equivalence (E2). Let
θ ∈ Con(A) and (a, b) ∈ θ and (c, d) ∈ θD(a, b). We have to show that (c, d) ∈ θ.
Since θD(a, b) ∈ D by (E1) we get c ≡ d mod ({a, b}, Δ(E)) which yields the
existence of δi ∈ Δ(E) for i = 0, 1, . . . , n with a ∈ δ0({a, b}) & b ∈ δn({a, b}) &
δi({a, b})∩δi+1({a, b}) �= ∅ for i ∈ {1, 2, .., n−1}. Since θ is a congruence relation
(δi(a), δi(b)) ∈ θ. Transitivity yields (δ0(a), δn(b)) = (c, d) ∈ θ. This completes
the proof. ��

5.2 Coordinatization of Complete Affine Ordered Sets

In the following we investigate under which conditions a complete affine ordered
set C can be coordinatized, that means, under which conditions there exists
an algebra A such that the elements of the complete affine ordered set can
be interpreted as the labeled congruence classes of the algebra, precisely C 

A(Con(A)).

In the language of complete affine ordered sets the notion of a dilation reads
as:

Definition 10. Let C := (Q, ≤, ‖) be a complete affine ordered set. Then we
call a self map δ on A(Q) a dilation if for all a, b ∈ A(Q) it holds that δ(a) ≤
π(δ(b)|a ∨ b). The set of all dilations of a complete affine ordered set is denoted
by Δ(C).

The dilations of a complete affine ordered set coincide with the dilations of its
associated closed SER:

Proposition 6. Let C := (Q, ≤, ‖) be a complete affine ordered set. Then we
have Δ(E(C)) = Δ(C).

Proof. Let a, b ∈ A(Q). We have δ(a) ≤ π(δ(b)|a ∨ b) if and only if (δ(a), δ(b)) ∈
θ(a ∨ b). ��

Using Proposition 4 we see that the dilations of a complete affine ordered set
also subsume the unary polynomial functions of a coordinatizing algebra if such
an algebra exists.

For a complete affine ordered set C, we call a partition (Ci)i∈I of the points
of C compatible if for all δ ∈ Δ(C) and for all i ∈ I if a, b ∈ Ci there exists a
j ∈ I such that δ(a), δ(b) ∈ Cj . Now we can state the coordinatization theorem
for complete affine ordered sets as follows.

Theorem 3 (coordinatization of complete affine ordered sets). Let C :=
(Q, ≤, ‖) be a complete affine ordered set. Then C can be coordinatized if and
only if

(C1) for any compatible partition (Ci)i∈I of A(Q) there exist (xi)i∈I with Ci =
A(xi) for i ∈ I and xi ‖ xj for all i, j ∈ I.
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Proof. “⇒”: Let A := (A, (f)I) be an algebra that coordinatizes C. To show (C1)
let (Ci)i∈I be a compatible partition of A(Q). By supposition C is isomorphic to
A(Con(A)). So we know there exists an isomorphism ε : Q −→ QA. The points
of A(Con(A)) are of the form {(a, ΔA), | a ∈ A} and since we can identify
points of C with points of A(Con(A)) via ε we can also identify them with
the carrier set A of A. So we can recognize Ĉ :=

⋃
i∈I C2

i as a congruence
relation since the dilations of C subsume the unary polynomial functions of A

and by Proposition 3 this is enough. But since Ĉ is a congruence relation we
know that (Ci, Ĉ) are mutually parallel subspaces of A(Con(A)). And since
A(ε−1(Ci, Ĉ)) = ε−1(A(Ci, Ĉ)) = ε−1({(c, ΔA) | c ∈ Ci}) = Ci we know that the
required xi exist and equal ε−1(Ci, Ĉ).
“⇐”: Let (C1) hold for a complete affine ordered set C. In the following we
will show that AC := (A(Q), Δ(C)) coordinatizes C. It suffices to prove that
E(C) = Con(AC) since by Theorem 2 in [KS04] we know that C 
 A(Con(AC))
is equivalent to E(C) 
 EA(Con(AC)) 
 Con(AC). Let θ ∈ E(C). Obviously,
for (a, b) ∈ θ we have that (δ(a), δ(b)) ∈ θ since δ is a dilation. Now assume
that θ ∈ Con(AC). Then {[a]θ | a ∈ A} constitutes a compatible partition of C

since dilations respect the congruence relations of AC by construction. But this
implies the existence of (xi)i∈I with xi ‖ xj and A(xi) = [a]θ for some a ∈ A
and we have θ = θ(xi) ∈ E(C) for an arbitrary i ∈ I. ��

For a complete affine ordered set we can define a closure operator H on the set of
points A(Q) via H(P ) := A(

∨
P ) for P ⊆ A(Q). If a complete affine ordered set

can be coordinatized this closure operator coincides with the closure operator
assigning to each set of elements of an associated algebra the smallest congruence
class they are contained in.

6 Outlook

As a congruence class geometry [Wi70] is a closure structure (A, [·]) derived
from an algebra A := (A, fI) where [·] assigns to a set C ⊆ A the small-
est congruence class [C] where C is contained in, it would be challenging to
investigate the connection between complete affine ordered sets and congru-
ence class geometries. Especially, this could enable utilitizations for data rep-
resentations, since techniques for using congruence class geometries for data
representation were insinuated in [Ka05]. For coordinatizable complete affine
ordered sets, the structure (A, H) – where H is defined as in the previous sec-
tion – is already a congruence class geometry which “sits” in the affine ordered
set. A first step could be to study the function which maps a coordinatizable
affine ordered set onto the closed sets of a congruence class geometry of the
respective algebra, denoted by Kon(A), via “forgetting the labels”; if we define
Konl(A) := {(A, θ) ∈ Kon(A) × Con(A) | A is a class of θ} this map is given
by ϕ : Konl(A) → Kon(A) with ϕ((A, θ)) := A. The map ϕ is

∨
-preserving

and therefore residuated (if we attach bottom elements to source and target).
Another viable extension of this line of research is constituted by the problem
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of coordinatizing projective ordered sets, the fourth categorical counterpart to
simple many-valued contexts as formulated in [KS04].
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Abstract. B. Ganter, R. Wille initiated formal concept analysis. Con-
cept lattice is one of the main notions and tools. Some researchers have
investigated the fuzzification of the classical crisp concept lattice. One
of them was shown by R. Bĕlohlávek : concept lattice in fuzzy setting.
The second one was given by S. Krajči: generalized concept lattice. On
the other hand, as a generalization of concept, Zhang, P. Hitzler, Shen
defined the notion of approximable concept on a Chu space. In this pa-
per, we introduce two generalizations of approximable concept lattice:
approximable concept lattice in the sense of R. Bĕlohlávek, and general-
ized approximable concept in the sense of S. Krajči.

Keywords: concept, approximable concept, L-set, generalized concept,
Chu space.

1 Introduction

B. Ganter, R. Wille initiated formal concept analysis, which is an order-theoreti-
cal analysis of scientific data. Concept lattice is one of the main notions and
tools, see [14]. Some researchers have investigated the fuzzification of the classical
crisp concept lattice. One is R. Bĕlohlávek’s work ([1]), which considers (L-)fuzzy
subsets of objects and (L-)fuzzy subsets of attributes. Another is S. Krajči’s work
([20]) which considers fuzzy subsets of attributes and ordinary/classical/crisp
subsets of objects. For more details, see [1, 5, 6, 7, 18, 19, 20].

As constructive models of linear logic, Barr and Seely brought Chu space
to light in computer science. V. Pratt also investigated Chu space in [21], and
Zhang, P. Hitzler, Shen discussed a special form of Chu space in [17, 23, 24].

In theoretical computer science, D. Scott initiated the domain theory which
theoretical approximable to the denotational semantics of programming lan-
guages at 1960s. At about the same time, in pure mathematics, J. D. Lawsom,
K. H. Hofman discovered the theory of algebraic lattices, continuous lattices from
the study of the structure of compact semi-lattice, see [15]. From the study of
domain theory, Zhang showed that a concept is not an affirmable property([22]),

S. Ben Yahia et al. (Eds.): CLA 2006, LNAI 4923, pp. 107–122, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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see Example 2. As a generalization of concept, in [17, 23, 24], Zhang, P. Hit-
zler, Shen introduced the notion of approximable concept on a Chu space. They
obtained the equivalence between the category of formal contexts with context
morphisms, and the category of complete algebraic lattices with Scott contin-
uous functions. For more results, including its applications in data-mining and
knowledge discovery, we refer to [23, 24].

In [8], we investigated the relation between approximable concept lattice and
formal topology (information base). Thus the connections between the four cate-
gories of Domain theory, Formal Concept Analysis, Formal topology, Information
System have been constructed in [8, 23, 24].

In this paper, we begin with an overview of algebraic lattices, L-sets, which
surveys Preliminaries. In Section 3, we introduce Zhang’s work. Then in
Section 4, we discuss the equivalence between two definitions of approximable
concept in fuzzy setting, and prove that all approximable concepts form an alge-
braic completely lattice of L-ordered sets. In the end, we investigate generalized
approximable concept, and show that generalized approximable concept lattices
represent algebraic lattices.

We generalize R. Bĕlohlávek, S. Krajči and Zhang’s works, also show a con-
nection between Formal Concept Analysis and Domain theory, provide a method
in data-mining and knowledge discovery in fuzzy setting.

2 Preliminaries

Let us recall some main notions needed in the paper. i.e., algebraic lattices,
L-sets. For the other notions, see [3, 15].

2.1 Algebraic Lattices

In [15], the notions of continuous lattice and algebraic lattice were introduced.
In the section, we recall some main definitions. For more details, see [15].

Let (P, ≤, ∨, ∧, 0, 1) be a complete lattice. For D ⊆ P , D is called a directed
set, ∀x, y ∈ D, if there exists z ∈ D, such that x ≤ z, y ≤ z.

For x, y ∈ P , x is said to be way below y, denoted by x � y, if for all directed
set D with y ≤ ∨D, there exists z ∈ D, such that x ≤ z. Let ⇓ x = {y | y � x}.
(P, ≤) is called a continuous lattice if for every x ∈ P , we have x = ∨ ⇓ x.

x ∈ P is called a compact element, if x � x, which is equivalent to: for
all directed sets D with x ≤ ∨D, there exists z ∈ D, satisfying x ≤ z. Let
K(�) = {x | x is compact }, K(�) is not a complete lattice in general.

(P, ≤) is called an algebraic lattice, if for every x ∈ P , there exists a directed
set Dx of compact elements, such that x = ∨Dx, that is to say,
x = ∨(↓ x ∩ K(�)), where ↓ x = {y | y ≤ x}.

In universal algebra, algebraic lattices have become familiar objects as lattices
of congruences and lattices of subalgebras of an algebra. Thus they have been
extensively studied, and applied in many areas, such that topological theory and
domain theory (see [15]). The role of algebraic completely lattice L-ordered sets
is analogous to the role of algebraic lattices in ordinary relational systems.
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2.2 L-Sets

The notion of an L-set was introduced in ([16]), as a generalization of Zadeh’s
(classical) notion of a fuzzy set. An overview of the theory of L-sets and L-
relations (i.e., fuzzy sets and relations in the framework of complete residuated
lattices) can be found in [3]. Let us recall some main definitions.

Definition 1. A residuated lattice is an algebra L= 〈L, ∨, ∧, ⊗, →, 0, 1〉 such
that

(1) 〈L, ∨, ∧, ⊗, →, 0, 1〉 is a lattice with the least element 0 and the greatest
element 1.

(2) 〈L, ⊗, 1〉 is a commutative monoid, i.e., ⊗ is associative, commutative,
and it holds the identity a ⊗ 1 = a.

(3) ⊗, → form an adjoint pair, i.e.,
x ⊗ y ≤ z iff x ≤ y → z holds for all x, y, z ∈ L.

Residuated lattice L is called complete if 〈L, ∨, ∧〉 is a complete lattice. In this
paper, we assume that L is complete.

The following properties of complete residuated lattices will be needed in this
paper.

(1) a ≤ b ⇒ a → c ≥ b → c, (2) a ≤ b ⇒ c → a ≤ c → b,
(3) a ≤ b ⇒ a ⊗ c ≤ b ⊗ c, (4) a = 1 → a,
(5) a ⊗ b ≤ a ∧ b, (6) a ≤ (a → b) → b,
(7) a ⊗ (a → b) ≤ b, (8) a ⊗ (b → c) ≤ b → a ⊗ c,
(9) a ⊗

∧
i∈I

bi ≤
∧
i∈I

(a ⊗ bi), (10) (
∨
i∈I

ai) → b =
∧
i∈I

(ai → b),

(11) a →
∧
i∈I

bi =
∧
i∈I

(a → bi), (12) (a → b) ⊗ (b → c) ≤ (a → c).

As discussed in [3], several important algebras are special residuated lattices:
Boolean algebras, Heyting algebras, BL-algebras, MV-algebras, Girard monoids
and others.

For a universe set X , an L-set in X is a mapping A : X → L, A(x) indicates
that the truth degree of “x belongs to A”. We use the symbol LX to denote the
set of all L-sets in X . The concept of an L-relation is defined obviously, and the
truth degree to which elements x and y are related by an L-relation I is denoted
by I(x, y) or (xIy).

For a ∈ L, x ∈ X , {a/x} is defined as an L-set in X : {a/x}(x) = a, {a/x}(y)
= 0, if y �= x.

A binary L-relation ≈ on X is an L-equality if it satisfies: ∀x, y, z ∈ X ,
(x ≈ x) = 1(reflexivity), (x ≈ y) = (y ≈ x) (symmetry), (x ≈ y) ⊗ (y ≈ z) ≤
(x ≈ z)(transitivity), and (x ≈ y) = 1 implies x = y.

I ∈ LX×Y is a binary L-relation, and it is compatible with respect to ≈X and
≈Y if I(x1, y1)⊗ (x1 ≈X x2)⊗ (y1 ≈Y y2) ≤ I(x2, y2) for any xi ∈ X, yi ∈ Y (i =
1, 2). Analogously, A ∈ LX is compatible with respect to ≈X if A(x1) ⊗ (x1 ≈X

x2) ≤ A(x2). An L-set A ∈ L〈X,≈〉 is called an ≈-singleton if there exists x0 ∈ X ,
such that A(x) = (x ≈ x0) for any x ∈ X .
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An L-order on X with an L-equality relation ≈ is a binary L-relation �
which is compatible with respect to ≈ and satisfies: ∀x, y, z ∈ X (x � x) =
1(reflexivity), (x � y) ∧ (y � x) ≤ (x ≈ y) (antisymmetry), (x � y) ⊗ (y � z) ≤
(x � z) (transitivity). A set X equipped with an L-order � and an L-equality
≈ is called an L-ordered set 〈〈X, ≈〉, �〉.

These notions are generalizations of the classical notions. Indeed, if L=2,
L-order �, L-equality ≈ coincide with the classical order ≤ and equality =.

For A, B ∈ LX , we define S(A, B)=
∧

x∈X

A(x) → B(x), (A ≈ B)=
∧

x∈X

A(x) ↔

B(x), and (A � B) = S(A, B), thus 〈〈LX , ≈〉, �〉 is an L-ordered set, see Ex-
ample 1. We write A ⊆ B, if S(A, B) = 1.

Example 1. This is [1] Example 6(1). For ∅ �= M ⊆ LX , we obtain that 〈〈M, ≈
〉, S〉 is an L-ordered set. In fact, reflexivity and antisymmetry are trivial, we
have to prove transitivity and compatibility. Transitivity: S(A, B) ⊗ S(B, C) ≤
S(A, C) holds if and only if S(A, B) ⊗ S(B, C) ≤ A(x) → C(x), i.e., ∀x ∈ X ,
A(x)⊗S(A, B)⊗S(B, C) ≤ C(x), and it is true since A(x)⊗S(A, B)⊗S(B, C) ≤
A(x) ⊗ (A(x) → B(x)) ⊗ (B(x) → C(x)) ≤ C(x). In the similarly way, we also
prove Compatibility: S(A, B) ⊗ (A ≈ A

′
) ⊗ (B ≈ B

′
) ≤ S(A

′
, B

′
).

For S(A, B), Lemma 1 will be used in the paper, see [3].

Lemma 1. (1) S(A,
⋂
i∈I

Bi) =
∧
i∈I

S(A, Bi), (2) A(x) ⊗ S(A, B) ≤ B(x).

Suppose X and Y are two sets with L-equalities ≈X and ≈Y , respectively. An L-
Galois connection ([1]) between 〈X, ≈X〉 and 〈Y, ≈Y 〉 is a pair 〈↑,↓ 〉 of mappings
↑ : L〈X,≈X〉 → L〈Y,≈Y 〉, ↓ : L〈Y,≈Y 〉 → L〈X,≈X〉, and satisfying the following
conditions:

S(A1, A2) ≤ S(A↑
2, A

↑
1), S(B1, B2) ≤ S(B↓

2 , B↓
1),

A ⊆ A↑↓, and B ⊆ B↓↑ for any A, A1, A2 ∈ LX , B, B1, B2 ∈ LY .
A mapping C : LX → LY is an L-closure operator, if for A, B ∈ LX , we have
(1) A ⊆ C(A), (2) S(A, B) ≤ S(C(A), C(B)), and (3) C(C(A)) = C(A).

3 Approximable Concepts Introduced by Zhang

As showed in Introduction, Zhang, P. Hitzler, Shen considered a special form of
Chu space in [17, 23, 24] as follows.

Definition 2. A Chu space P is a triple P = (Po, |=P , Pa), where Po is a set
of objects and Pa is a set of attributes. The satisfaction relation |=P is a subset
of Po × Pa. A mapping from a Chu space P = (Po, |=P , Pa) to a Chu space Q =
(Qo, |=Q, Qa) is a pair of functions (fa, fo) with fa : Pa → Qa and fo : Qo → Po

such that for any x ∈ Pa and y ∈ Qo, fo(y) |=P x iff y |=Q fa(x).

With respect to a Chu space P = (Po, |=P , Pa), two functions can be defined:
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α : P(Po) → P(Pa) with X → {a | ∀x ∈ X x |=P a},
ω : P(Pa) → P(Po) with Y → {o | ∀y ∈ Y o |=P y}.
α, ω form a pair of Galois connection between P(Po) and P(Pa) ([15]).

A subset A ⊆ Pa is called an intent of a formal concept if it is a fixed point of
α◦ω, i.e., α(ω(A)) = A. In [23], A is also called a (formal) concept (of attributes).

If A is a concept, for every subset B ⊆ A, we have B ⊆ α(ω(B)) ⊆ α(ω(A)) =
A ([24]).

Dually, an extent of a formal concept, or a (formal) concept (of objects) also
defined in [24].

Zhang pointed out in [24] that in FCA, a Chu space is called a formal context,
but ”Chu” carries with it the notion of morphism, to form a category. On the
other hand, FCA provides the notion of concept, intrinsic to a Chu space.

As a generalization of the notion of concept, Zhang and Shen introduced the
notion of approximable concept in [23]. A subset A ⊆ Pa is an approximable
concept (of attributes) if for every finite subset X ⊆ A, we have α(ω(X)) ⊆ A.
Clearly, every concept is an approximable concept, but the converse is false ( see
Example 2).

Example 2. In [23], Zhang and Shen gave the following example, to show an
approximable concept is not a concept in general.

P ↑ t ↑ b ↑ ∗ ↑ 0 ↑ 1 ↑ 2 · · · ↑ −1 ↑ −2 · · ·
t × × × × × × · · · × × · · ·
b × · · · · · ·
* × × · · · · · ·
0 × × · · · × × · · ·
1 × × × · · · × × · · ·
...

...
...

...
...

...
...

...
-1 × · · · × × · · ·
-2 × · · · × · · ·
...

...
...

...
...

...
...

...

Given S = {b, · · · , −2, −1, 0, 1, 2, · · · , t, ∗}, with the order b < · · · < −2 <
−1 < 0 < 1 < 2 < · · · < t, and b < ∗ < t. Then S is a complete lattice which is
not algebraic.

∀x ∈ S, let ↑ x = {y | x ≤ y}, × indicates that y ∈↑ x, we obtain a Chu space
as follows.

Pa = {↑ x | x ∈ S}, Po = {x | x ∈ S}, x |=↑ y, if x ∈↑ y, then P = (Po, |=, Pa)
is a Chu space.

(1) {↑ i | i ≤ 0, or i ≥ 0} ∪ {↑ b} is an approximable concept, not a concept.
(2) Clearly ∗ ∈ α(ω({↑ i | i ≥ 0})), and but for any finite subset X of

{↑ i | i ≥ 0}, we have ∗ �∈ α(ω(X)). {↑ i | i ≥ 0} is a family of concept.
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4 Approximable Concepts in Fuzzy Setting

4.1 Definitions

In [1, 5], suppose X and Y are two sets with L-equalities ≈X and ≈Y , respec-
tively; I an L-relation between X and Y which is compatible with respect to
≈X and ≈Y . A pair 〈↑,↓ 〉 of mappings was defined as:

↑ : LX → LY , for A ∈ LX , A↑(y) =
∧

x∈X

A(x) → I(x, y).

and ↓ : LY → LX , for B ∈ LY , B↓(x) =
∧

y∈Y

B(y) → I(x, y).

Then 〈X, Y, I〉 is a formal L-context; 〈A, B〉 is a concept in fuzzy setting, if
A = A↑↓, B = B↓↑. That is, A is an extent of a concept, B is an intent of a
concept; or A is a concept of objects, B is a concept of attributes. β(X, Y, I) =
{〈A, B〉 | 〈A, B〉 is a concept } is a formal concept lattice.

As a generalization, we introduced the notion of an approximable concept in
fuzzy setting ([9, 12, 13]). According to the reviewer’s suggestion of [9], there
exist two choices for the definition of an approximable concept. We adopted one
kind (Definition 4) in [9]. In the section, we discuses the other kind (Definition 5),
and prove the equivalence between the two definitions.

Given two L-ordered sets (X, ≈X), (Y, ≈Y ), and I is an L-relation. Let Po =
(X, ≈X), Pa = (Y, ≈Y ), and |= induced by the L-relation I, that is to say,
(x |= y) = (xIy). We obtain a Chu space P = ((X, ≈X), |=, (Y, ≈Y )) in fuzzy
setting, and α =↑, ω =↓, i.e.,

α : LX → LY , for A ∈ LX , α(A)(y) = A↑(y) =
∧

x∈X

A(x) → I(x, y).

ω : LY → LX , for B ∈ LY , ω(B)(x) = B↓(x) =
∧

y∈Y

B(y) → I(x, y).

Definition 3. Suppose H ∈ LX, if {x ∈ X | H(x) > 0} is finite, then H is
called finite.

Clearly if L=2, {x ∈ X | H(x) > 0} = {x ∈ X | H(x) = 1}, is the same with
the finite set in classical set theory.

In [9], we defined the notion of an approximable concept,

Definition 4. Given A ∈ LX , if for each finite H ∈ LX , we have (H �
A) ≤ (ω(α(H)) � A), i.e., S(H, A) ≤ S(ω(α(H)), A), then A is called to be an
extent of a formal fuzzy approximable concept. A is also called an (formal fuzzy)
approximable concept (of objects).

Dually, a set A ∈ LY is an intent of a formal fuzzy approximable con-
cept, if for each finite H ∈ LY , we have (H � A) ≤ (α(ω(H)) � A), i.e.,
S(H, A) ≤ S(α(ω(H)), A). A is also called an (formal fuzzy) approximable con-
cept (of attributes). We will use the symbol A (Y, I) to denote the set of all
approximable concepts A (of attributes).

Since for each finite H ∈ LX , we have H ⊆ ω(α(H)), that is to say, H(x) ≤
ω(α(H))(x) for every x ∈ X . So we obtain H(x) → A(x) ≥ ω(α(H))(x) → A(x).
Thus S(H, A) ≥ S(ω(α(H)), A) for every A ∈ LX .
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In the similar way, for each finite H ∈ LY , and A ∈ LY , we also have
S(H, A) ≥ S(α(ω(H)), A).

By the above discussion, we obtain an equivalent definition,

Defintion 4
′
. A ∈ LX is called an extent of a formal fuzzy approximable

concept, if for each finite H ∈ LX, we have (H � A) = (ω(α(H)) � A), i.e.,
S(H, A) = S(ω(α(H)), A).

Dually, an L-set A ∈ LY is called an intent of a formal fuzzy approximable
concept, if for each finite H ∈ LY , we have (H � A) = (α(ω(H)) � A), i.e.,
S(H, A) = S(α(ω(H)), A).

The second choice for the definition of an approximable concept is Definition 5.

Definition 5. Given A ∈ LX , if for each finite H ∈ LX, and H ⊆ A, we have
ω(α(H)) ⊆ A, then A is called to be an extent of a formal fuzzy approximable
concept. A is also called an (formal fuzzy) approximable concept (of objects).

Dually, a set A ∈ LY is an intent of a formal fuzzy approximable concept, if
for each finite H ∈ LY , and H ⊆ A, we have α(ω(H)) ⊆ A. A is also called an
(formal fuzzy) approximable concept (of attributes).

From the one direction, we have

Lemma 2. Suppose A is an approximable concept in the sense of Definition 4,
then A is also an approximable concept in the sense of Definition 5.

Proof. It is clearly. ��

From the other direction, suppose A is an approximable concept in the sense of
Definition 5, for F = {A(y0)/y0}, clearly we have F ⊆ A. Thus α(ω(F )) ⊆ A.
So we obtain α(ω(F ))(y) ≤ A(y) for every y ∈ Y .

ω(F )(x) =
∧

y∈Y

F (y) → I(x, y) = A(y0) → I(x, y0).

and
α(ω(F ))(y) =

∧
x∈X

ω(F )(x) → I(x, y) =
∧

x∈X

(A(y0) → I(x, y0)) → I(x, y).

By Definition 5, we have,
∧

x∈X

(A(y0) → I(x, y0)) → I(x, y) ≤ A(y).

Lemma 3. Suppose A is an approximable concept in the sense of Definition 5,
then A is also an approximable concept in the sense of Definition 4.

Proof. Suppose A is an approximable concept in the sense of Definition 5.
(1) For simplicity, we may assume H = {a/y0}, then
S(H, A) =

∧
y∈Y

H(y) → A(y) = a → A(y0).

ω(H)(x) =
∧

y∈Y

H(y) → I(x, y) = a → I(x, y0).

and
α(ω(H))(y) =

∧
x∈X

ω(H)(x) → I(x, y) =
∧

x∈X

[a → I(x, y0)] → I(x, y).



114 X. Chen et al.

(2) We have to prove A is an approximable concept in the sense of Definition
4, it suffices to prove S(H, A) ≤ S(α(ω(H)), A). i.e.,

a → A(y0) ≤
∧

y∈Y

[
∧

x∈X

(a → I(x, y0)) → I(x, y)] → A(y) (*).

(3) To prove (*), it suffices to prove
a → A(y0) ≤ [

∧
x∈X

(a → I(x, y0)) → I(x, y)] → A(y) holds for every y ∈ Y .

It is valid, since
a → A(y0) ≤ [A(y0) → I(x, y0)] → [a → I(x, y0)]
≤ [(a → I(x, y0)) → I(x, y)] → [(A(y0) → I(x, y0)) → I(x, y)].

Thus, we obtain,
[(a → I(x, y0)) → I(x, y)] ⊗ [a → A(y0)] ≤ [(A(y0) → I(x, y0)) → I(x, y)].

So we have
[(a → I(x, y0)) → I(x, y)]⊗ [a → A(y0)] ≤

∧
x∈X

[(A(y0) → I(x, y0)) → I(x, y)],

that is to say,
[a → A(y0)]
≤ [(a → I(x, y0)) → I(x, y)] →

∧
x∈X

[(A(y0) → I(x, y0)) → I(x, y)]

≤
∧

x∈X

[(a → I(x, y0)) → I(x, y)] →
∧

x∈X

[(A((y0) → I(x, y0)) → I(x, y)]

≤
∧

x∈X

[(a → I(x, y0)) → I(x, y)] → A(y).

By this, (*) holds. Hence we obtain S(H, A) ≤ S(α(ω(H)), A). That is, A is
an approximable concept in the sense of Definition 4. ��
So we obtain,

Proposition 1. Definition 4 and Definition 5 are equivalent.

The following proposition gives a representation of an approximable concept.

Proposition 2. Suppose A is an approximable concept in A(Y.I), then
A(y) =

∨

finite H∈LY

S(H, A) ⊗ α(ω(H))(y).

Proof. Since A is an approximable concept, so for each finite H ∈ LY , we have
S(H, A) ≤ S(α(ω(H)), A), thus we have,

S(H, A) ⊗ α(ω(H))(y) ≤ S(α(ω(H)), A) ⊗ α(ω(H))(y) ≤ A(y).
So we obtain,

∨

finite H∈LY

S(H, A) ⊗ α(ω(H))(y) ≤ A(y).

On the other hand, for {A(y)/y} ∈ LY , since H ⊆ α(ω(H)), we obtain
S({A(y)/y}, A) ⊗ α(ω({A(y)/y}))(y) = 1 ⊗ α(ω({A(y)/y}))(y)
= α(ω({A(y)/y}))(y) ≥ {A(y)/y}(y) = A(y).

Furthermore we have,
∨

finite H∈LY

S(H, A) ⊗ α(ω(H))(y) ≥ A(y). Hence the equation holds. ��
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4.2 Main Results

In [10, 11, 13], we introduced the notions of a directed set, a way-below relation,
a continuous lattice, an algebraic lattice in fuzzy setting.

Suppose M ⊆ LX , for an L-set U in M , two operators were defined in [3],
for every x ∈ X ,

⋃
U(x) =

∨
A∈M

U(A) ⊗ A(x),
⋂

U(x) =
∧

A∈M

U(A) → A(x).

Clearly,
⋃

U and
⋂

U are generalizations of the union and the intersection of
a system of sets in the classical case.

We gave the notion of a directed set in fuzzy setting, that is, Definition 6.

Definition 6. Suppose U is an L-set in M , then U is called a directed L-set,
if for any A, B ∈ M , there exists C ∈ M , we have U(A) ≤ U(C) ⊗ S(A, C),
U(B) ≤ U(C) ⊗ S(B, C).

Clearly, when L=2, if A ∈ U , B ∈ U , by Definition 6, there exists C ∈ U , such
that A ⊆ C, B ⊆ C.

For any directed L-set U in M , we replace
⋃

U by
⊔

U , i.e., for every x ∈ X ,
⊔

U(x) =
∨

A∈M

U(A) ⊗ A(x).

Clearly,
⊔

U is a generalization of a directed union of a system of sets in the
classical case.

By means of the notion of directed L-sets, we defined the notion of way-below
relation. For A, B ∈ M , and U is any directed L-set in M , let

W (A,B) =
�

{U is directed}

S(B,
�

U) →
�

E∈M

U(E) ⊗ S(A, E)

In fact, when L=2, the above definition coincides with the definition of way
below relation according to the definition in [15].

Furthermore, we gave the notion of compact elements in fuzzy setting.

Definition 7. Suppose A ∈ M , A is compact with respect to
⊔

in M , if for
any directed L-set U in M , we have S(A,

⊔
U) →

∨
E∈M

U(E) ⊗ S(A, E) = 1.

In fact, when L=2, the above definition coincides with the definition of a compact
element according to the definition in [15].

An L-ordered set 〈〈M, ≈〉, �〉 is a completely algebraic lattice, if
(1) M is closed for

⊔
and

⋂
. Moreover, for any A ∈ M , there exists a compact

directed L-set U in M , such that A =
⊔

U .
(2) for any directed L-set U in M , sup U is a ≈-singleton,
(3) for any L-set U∗ in M , inf U∗ is a ≈-singleton.

In what follows, we will adopt Definition 4, use the symbol A(Y, I) to denote
the set of all approximable concepts A (of attributes), and prove that A(Y, I) is
a completely algebraic lattice L-ordered sets in the sense of [3].

Suppose A, B ∈ A(Y, I), we define (A � B) =
∧

y∈Y

A(y) → B(y), and (A ≈

B) = (A � B) ∧ (B � A). From Example 1, we know that 〈〈 A (Y, I), ≈〉, �〉 is
an L-ordered set. That is,
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Lemma 4. 〈〈 A (Y, I), ≈〉, �〉 is an L-ordered set.

On the one hand, suppose U is a directed L-set in A(Y, I), let D =
⊔

U , we have

Lemma 5. D is an approximable concept.

Proof. Suppose U is a directed L-set in A(Y, I), let D =
⊔

U , we have to prove
D is an approximable concept.

For each finite H ∈ LY , for every A ∈ A(Y, I), since A is an approximable
concept, we have S(H, A) = S(α(ω(H)), A). Thus

S(H, D) ≥
∨

A∈A(Y,I)

U(A) ⊗ S(H, A),

and
S(α(ω(H)), D) ≥

∨
A∈A(Y,I)

U(A) ⊗ S(α(ω(H)), A).

By the above analysis, we obtain
S(H, D) ≥

∨
A∈A(Y,I)

U(A) ⊗ S(H, A)

=
∨

A∈A(Y,I)

U(A) ⊗ S(α(ω(H)), A) (since A is an approximable concept)

≤ S(α(ω(H)), D) ≤ S(H, D). (since H ⊆ α(ω(H)))
So, we have

S(H, D) = S(α(ω(H)), D) =
∨

A∈A(Y,I)

U(A) ⊗ S(α(ω(H)), A)

=
∨

A∈A(Y,I)

U(A) ⊗ S(H, A).

i.e., D is an approximable concept. ��

Lemma 5 shows that A(Y, I) is closed for the operator
⊔

.
Lemma 6 shows that for any directed L-set U in A(Y, I), sup U is a ≈-singleton.

Lemma 6. sup U is a ≈-singleton.

Proof. Since U is a directed L-set in A(Y, I), by Lemma 5, D =
⊔

U is an
approximable concept. i.e., D ∈ A(Y, I).

We have to show sup U is a ≈-singleton, it suffices to prove
(U(U)(D))

∧
(LU(U)(D)) = 1.

(1) By the definition of D, we have U(A) ⊗ A(y) ≤ D(y), which is equivalent
to U(A) ≤ A(y) → D(y). Thus we have 1 ≤ U(A) → (A � D), so we obtain
U(U)(D) ≥ 1.

(2) By the definition of L, we have to show 1 ≤ (U(U))(A) → (D � A)
for any A ∈ A(Y, I). It is sufficient to prove (U(U))(A) ≤ (D � A) for any
A ∈ A(Y, I).

Since (D � A) = S(D, A) =
∧

y∈Y

D(y) → A(y), we have to prove (U(U))(A) ≤

D(y) → A(y) for each y ∈ Y . i.e., D(y)⊗(U(U))(A) ≤ A(y) holds for each y ∈ Y .
That is, for each y ∈ Y , we have
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∨
C∈A(Y,I)

U(C) ⊗ C(y) ⊗ (U(U))(A) ≤ A(y).

It is true, since
U(C) ⊗ C(y) ⊗ (U(U))(A)
= U(C) ⊗ C(y) ⊗

∧
B∈A(Y,I)

U(B) → (B � A)

≤ U(C) ⊗ C(y) ⊗ [U(C) → (C � A)]
= U(C) ⊗ C(y) ⊗ [U(C) → S(C, A)]
≤ C(y) ⊗ S(C, A) ≤ A(y).

By the above proof, we obtain that (LU(U))(D) = 1. Hence Lemma 6 holds. ��

On the other hand, for any L-set U∗ in A(Y, I), where U∗ may be not directed.
Let E =

⋂
U∗, then we have

Lemma 7. E is an approximable concept.

Proof. For each finite H ∈ LY , and each A ∈ A(Y, I), we have S(H, A) ≤
S(α(ω(H)), A). i.e.,

∧
y∈Y

H(y) → A(y) ≤
∧

y∈Y

α(ω(H))(y) → A(y).

By this, we have
∧

A∈A(Y,I)

U∗(A) → [
∧

y∈Y

H(y) → A(y)]

≤
∧

A∈A(Y,I)

U∗(A) → [
∧

y∈Y

α(ω(H))(y) → A(y)].

We thus have
∧

y∈Y

H(y) → [
∧

A∈A(Y,I)

U∗(A) → A(y)]

≤
∧

y∈Y

α(ω(H))(y) → [
∧

A∈A(Y,I)

U∗(A) → A(y)].

So, we obtain
∧

y∈Y

H(y) → E(y) ≤
∧

y∈Y

α(ω(H))(y) → E(y).

This implies that S(H, E) ≤ S(α(ω(H)), E). i.e., E is an approximable concept.
��

Lemma 7 shows that A(Y, I) is closed for the operator
⋂

.

Lemma 8. inf U∗ is a ≈-singleton.

The proof see [9].

Lemma 9. Suppose A ∈ A(Y, I), then there exists a directed L-set UA in
A(Y, I), such that A =

⊔
UA.

The proof see [9].
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Lemma 9 will be used to prove that A(Y, I) is algebraic.
For A ∈ A(A, I), by Lemma 9, A =

⊔
UA, where UA is a directed L-set in

A(Y, I). On the other hand, by Lemma 6, we show that sup U is a ≈-singleton
for any directed L-set U in A(Y, I); by Lemma 7, A(Y, I) is closed for

⋂
, and

by Lemma 8, inf U∗ is a ≈-singleton for any L-set U∗ in A(Y, I),. Furthermore,
Lemmas 4, 5, 6, 7, 8 show that 〈〈A(Y, I), ≈〉, �〉 is a completely lattice L-ordered
set. So we obtain,

Proposition 3. 〈〈A(Y, I), ≈〉, �〉 is a completely lattice L-ordered set with two
operators

⊔
and

⋂
.

In the end of the section, we will show the approximable concept lattice is alge-
braic.

Lemma 10. For each finite H ∈ LY , α(ω(H)) is compact with respect to
⊔

in
A(Y, I).

The proof see [9].

Proposition 4. A(Y, I) is algebraic.

Proof. By Lemmas 8, 10. ��

Note 1. In [9], suppose (V, ≤) is an algebraic completely lattice, K(�) is the set of
all compact elements, and � is the way below relation ([15]), see Section 2.1. We
also constructed a Chu space in the fuzzy sense (i.e., the objects, the attributes,
the satisfaction relation are in fuzzy setting), such that it’s approximable concepts
of attributes is isomorphic to (V, ≤) in the sense of [1] Definition 3.

5 Generalized Approximable Concepts

As showed in Introduction, R. Bĕlohlávek and Stanislav Krajc̆i gave the gener-
alization of concept lattice, respectively, see [1, 6].

In [18, 19], Stanislav Krajc̆i obtained a common platform for both of them, and
proved all complete lattices are isomorphic to the generalized concept lattices.

We introduce some main notions from [18, 19].
Suppose L is a poset, C and D are two supremum-complete upper-semilattices.

i.e., there exists sup X =
∨

X for each subset of C or D (in fact, C, D are com-
plete lattices). Let • : C × D → L be monotone and left-continuous in both their
arguments, that is to say,

1a) c1 ≤ c2 implies that c1 • d ≤ c2 • d for all c1, c2 ∈ C and d ∈ D.
1b) d1 ≤ d2 implies that c • d1 ≤ c • d2 for all c ∈ C and d1, d2 ∈ D.
2a) If c•d ≤ ι holds for d ∈ D, ι ∈ L and for all c ∈ X ⊆ C, then sup X•d ≤ l.
2b) If c•d ≤ ι holds for c ∈ C, ι ∈ L and for all d ∈ Y ⊆ D, then c•supY ≤ l.

Let A and B be non-empty sets and R be L-fuzzy relation on their Cartesian
product, R : A × B → L. Stanislav Krajc̆i defined two mappings as follows,
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(1) ↗: BD →A C, if g : B → D, then ↗ (g) : A → C, where ↗ (g)(a) =
sup{c ∈ C | ∀b ∈ B, c • g(b) ≤ R(a, b)}.

(2) ↙: AC →B D, if f : A → C, then ↙ (f) : B → D, where ↙ (f)(b) =
sup{d ∈ D | ∀a ∈ A, f(a) • d ≤ R(a, b)}.

In [18, 19], Stanislav Krajc̆i introduced a generalized concept lattice.
Based on the common platform, we give a generalization of an approximable

concept, i.e., a generalized approximable concept.
The notions of a directed set, an algebraic lattice were introduced in Section 2.1.

In the section, because the definition is not symmetric, similarly, we also give the
notions of a up-directed set, a left-algebraic lattice.

Definition 8. Suppose h : B → D, if there exists {bi | i ∈ I} ⊆ B, where I is
a finite index, such that h(bi) �= 0, and h(b) = 0 for all b ∈ B, b �= bi, then h is
called finite.

Definition 9. Suppose g : B → D, g is a generalized approximable concept, if
for each finite h ≤ g, we have ↙↗ (h) ≤ g.

The collection of all generalized approximable concepts denoted by A. In the
first part, we will show that (A, ≤) is a left-algebraic lattice.

When L, C, D are finite, the notions of a generalized approximable concept
and a generalized concept are identical.

Lemma 11. Suppose g ∈ A, {↙↗ (h) | finite h ≤ g} is up-directed.

Proof. For g ∈ A, suppose h1, h2 are finite, and h1, h2 ≤ g, we have ↙↗
(h1) ≤↙↗ (h1 ∨ h2), ↙↗ (h2) ≤↙↗ (h1 ∨ h2). where (h1 ∨ h2)(a) = h1(a) ∨
h2(a). Thus h1 ∨ h2 is also finite, and h1 ∨ h2 ≤ g. ��

Lemma 12. Suppose g ∈ A, we have g = sup{↙↗ (h) | finite h ≤ g}.

Proof. It is trivial. ��

By Lemmas 11, 12, we have g is the supremum of a up-directed set.

Lemma 13. Suppose h is finite, then ↙↗ (h) is compact.

Proof. It is trivial. ��

Lemma 14. Suppose {gi | i ∈ I} is a up-directed set of generalized approx-
imable concepts, then

∨
i∈I

gi is also a generalized approximable concept.

Proof. For each finite h ≤
∨
i∈I

gi, there exist g1, g2, · · · , gm, such that h(bi) ≤

gi(bi); and for every b ∈ B, b �= bi, h(b) = 0.
Since {gi | i ∈ I} is up-directed, there exists gi0 , such that h ≤ gi0 . Further-

more, gi0 is a generalized approximable concept, we have ↙↗ (h) ≤ gi0 ≤
∨
i∈I

gi,

which implies that
∨
i∈I

gi is a generalized approximable concept. ��
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Lemma 15. Suppose {gi | i ∈ I} is a set of generalized approximable concepts,
then

∧
i∈I

gi is also a generalized approximable concept.

Proof. It is trivial. ��

Proposition 5. (A, ≤) is left-algebraic.

Proof. By Lemmas 11, 12, 13, 14, 15. ��

Proposition 5 shows that all generalized approximable concepts form a left-
algebraic lattice. Conversely, in the second part, suppose (P, ≤) is a left-algebraic
lattice, we will construct a generalized approximable concept lattice which is
isomorphic to (P, ≤).

The elements of P denoted by x, y, and the elements of K(�) denoted by
p, q, where K(�) is the set of all compact elements.

Let A = P , B = K(�), and R(x, p) : A × B → L indicates the degree of p
belonging to x. By Proposition 3, we obtain a generalized approximable concept
lattice (A, ≤).

In what follows, We will prove that (P, ≤) is isomorphic to (A, ≤).
Suppose e ∈ D, p ∈ K(�), we define a mapping {e/p} : K(�) → D, where

({e/p})(p) = e; ({e/p})(q) = 0, if q �= p.
Similarly, for m ∈ C, x ∈ P , we also define a mapping {m/x} : P → C, where

{m/x}(x) = m; and {m/x}(y) = 0, if y �= x.

Lemma 16. (1) ↗ ({e/p})(x) = sup{c ∈ C | c • e ≤ R(x, p)},
(2) ↙ ({m/x})(p) = sup{d ∈ D | m • d ≤ R(x, p)}.

Proof. (1) ↗ ({e/p})(x) = sup{c ∈ C | ∀q ∈ K(�), c • ({e/p})(q) ≤ R(x, q)}
= sup{c ∈ C | c • e ≤ R(x, p)}.

(2) It is analogous. ��

Proposition 6. Suppose g : K(�) → D is a generalized approximable concept,
p ∈ K(�), g(p) �= 0, then we have g(p) = 1.

Proof. For g : K(�) → D, and p ∈ K(�), g(p) �= 0. Let e = g(p) ∈ D, we
obtain a mapping {e/p} : K(�) → D as defined above.

By Lemma 16, let x = p ∈ K(�) ⊆ P , we have
↗ ({e/p})(p) = sup{c ∈ C | c • e ≤ R(p, p)} = 1.
↙↗ ({e/p})(p) = sup{d |↗ ({e/p})(p) • d ≤ R(p, p)} = 1.
Since {d/p} ≤ g, and g is a generalized approximable concept, we have ↙↗

({e/p}) ≤ g. Thus ↙↗ ({e/p})(p) ≤ g(p). So we obtain g(p) = 1. ��

By this, for a generalized approximable concept g, we define:
xg = ∨{p | g(p) = 1}. On the other hand, for every x ∈ P , since P is left-
algebraic, x = ∨{↓ x ∩ K(�)}. We may define gx : K(�) → D, such that
gx(p) = 1 for every p � x. Then gx is a generalized approximable concept. Thus
we obtain an isomorphism between P and generalized approximable concept
lattice A. Thus P and A is isomorphic.
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6 Conclusions

The paper consist of two parts. In the first part, as a generalization of approx-
imable concept, we introduced the notion of an approximable concept in fuzzy
setting, discussed the equivalence of two definitions of an approximable concept,
and proved that all approximable concepts form an algebraic completely lattice
of L-ordered sets. Furthermore, we obtained the isomorphism between them in
[9]. In the second part, we gave another generalization of approximable con-
cept, that is, generalized approximanle concept, and proved that all generalized
approximable concept lattices are isomorphic to the algebraic complete lattices.
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Abstract. In this work we are interested in the problem of mining very
large distributed databases. We propose a distributed data mining tech-
nique which produces a meta-classifier that is both predictive and de-
scriptive. This meta-classifier is made of a set of classification rules, which
can be refined then validated. The refinement step, proposes to remove
from the meta-classifier rules that according to their confidence coeffi-
cient, computed by statistical means, would not have a good prediction
capability when used with new objects. The validation step uses some
samples to fine-tune rules in the rule set resulted from the refinement
step. This paper deals especially with the validation process. Indeed, we
propose two validation techniques: the first one is very simple and the
second one uses a Galois lattice. A detailed description of these processes
is presented in the paper, as well as the experimentation proving the vi-
ability of our approach.

1 Introduction

We witness nowadays an explosion of electronic data. Indeed, almost everything
(grocery, medical file, car repair history, etc.) is recorded on databases for future
analysis. To perform this analysis, many centralized data mining tools exist. But
with increasingly bigger databases, these tools become very time-consuming.

Distributed data mining tools are created as an alternative to centralized
ones for inherently distributed data or in order to speed-up processing time.
So, from a set of individual databases {DBi}, we propose to produce a meta-
classifier R = ∪iCi, where each Ci is a classifier made of a rule set. This set of
rules R could be further refined then validated. The refinement step, proposes
to remove from R rules that according to their confidence coefficient, computed
by statistical means, would not have a good prediction capability when used
with new objects. The validation step, which is the core of this paper, uses some
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samples to fine-tune rules in the rule set resulted from the refinement step. In this
paper, we propose two validation techniques. The first one uses some samples
extracted from the distributed databases in order to compute the error rate for
each rule. This error rate is then used to decide whether the rule should be kept
in the final meta-classifier. The second validation process uses a Galois lattice
where more sophisticated fine-tuning is conducted.

The paper proceeds as follows. Section 2 briefly enumerates some existing
distributed data mining techniques. In Section 3, we introduce the proposed
technique where we detail both the simple and the Galois lattice based validation
processes. Then, we present in Section 4 experiments conducted to assess both
techniques and which prove the viability of our method. We finally present a
conclusion and our future work.

2 State of the Art

A rule set can be used both as a predictive and descriptive tool. Therefore, the
technique we developed produces rule sets. In the literature purely predictive
techniques such as bagging [1], boosting [2], stacking [3], and the arbiter and
combiner methods [4] are found, but since they are not descriptive, they are
deemed to be irrelevant to this paper.

Also, as we present in this paper a technique developed in a distributed data
mining perspective, we will ignore some other non relevant techniques as the
Ruler System [5] that was developed for the aggregation of several decision trees
built on the same data set in a centralized system, the Distributed Learning
System [6] developed in a context of information management system that builds
a distributed learning system, and the Fragmentation Approach [7] which uses
probalistic rules.

The closest existing techniques to ours are:

– the MIL algorithm [8] [9];
– the Distributed Rule Learner technique [10]; and
– a mixture of the last two techniques [11].

These techniques produce a set of disjoint cover rules, i.e., any object trig-
gers one and only one rule, contrarily to our technique. Lifting up that constraint
eliminates the processing time that is required to choose between these “compet-
ing” rules. However, we then need to referee between “conflicting” rules. Section 3
below shows how one can at a very low computing cost, implement an effective
refereeing mechanism through a majority vote (see below). Therefore, as none
of these techniques need to validate their rule set, we will not detail them in this
paper. The interested reader may get more details on these techniques in [12],
[13], and [14].

3 The Proposed Meta-classifier

The proposed algorithm goes roughly through two tasks: a distributed one
achieved by “miner agents” which have to mine distributed databases on remote
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sites and to extract useful information, producing base classifiers Ci ∀i ∈ [1, n],
and a centralized task achieved by a “collector agent” which is responsible of
aggregating information gathered by miner agents in order to produce the meta-
classifier. Hereafter, we detail the tasks of these two types of agents.

3.1 The Tasks of a Miner Agent

We have already detailed the task of a miner agent in previous papers [13] [15]
[12]. In what follows we summarize them through the algorithm of Fig 1.

Do, by a miner agent Ami, working on database DBi on a remote site:

1. Apply on DBi a classification algorithm producing a set of rules
with disjoint cover. The produced set is: Ri = {rik | k ∈ [1..mi]} where
mi is the number of rules;

2. Compute for each rik a confidence coefficient crik ;
3. Extract a random sample Si from DBi.

Fig. 1. Algorithm showing the tasks of a miner agent

The algorithm of Fig. 1 shows that a miner agent produces a set of classi-
fication rules, called base classifier, then computes for each rule a confidence
coefficient. This coefficient, as its name suggests, reflects the confidence that we
have in each rule based on some statistic means [13]. The sample Si is used
later by collector agent, in the process of rule validation. The size of this sample
should be very small (about 50 objects) in order to reduce the amount of data
traveling from the database site to the collector agent site.

3.2 The Tasks of a Collector Agent

The tasks of a collector agent are detailed in Fig. 2. This algorithm shows that
a collector agent starts by aggregating all rules in order to produce the meta-
classifier, R. Indeed, the simple aggregation of base classifiers has a good pre-
dictive capacity [13] [14].

The main problem that turns up from using the meta-classifier R as a de-
scriptive tool could be the number of rules proposed to the user in order to
explain the predicted class of a new object. In fact, the aggregation of x rules
from n databases produces in the worst case nx rules. The subsequent steps
(the refinement and the validation steps) are proposed to fix this drawback. In
fact, the refinement step, proposes to remove from R rules that according to
their confidence coefficient would not have a good prediction capability when
used with new objects. The resulting meta-classifier is the set Rt. The validation
step, which is the core of this paper, uses some samples to fine-tune rules in
Rt by identifying those that actually have poor prediction performance on the
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Do, by a collector agent CA, on the central site:

1. Main step: Create the primary meta-classifier R as follows:
R =

�
i=1...n Ri where n is the number of sites

2. Optional refinement step: From R, eliminate rules which have a
confidence coefficient lower than a certain threshold t (determined
empirically) and produce Rt:
Rt = {rik ∈ R | crik ≥ t};

3. Optional validation step:
(a) Create S as follows: S =

�
i=1...n Si;

(b) Use S to validate rules in Rt.

Fig. 2. Algorithm showing the tasks of a collector agent

samples. The validation process is detailed hereafter where we propose two tech-
niques. The first one uses a Galois lattice, while the second one simply computes
a new error rate considering S as a test set.

3.3 The Use of Set R as a Meta-classifier

The set R represents the aggregation of all base classifiers (R = ∪iRi). This rule
set is used as a predictive model as well as a descriptive one. From a predictive
point of view, the predicted class of a new object is the class predicted by a
majority vote of all the rules that cover it, where the rules are weighted by their
confidence coefficients1.

It is to be noted that any object can be covered by at most n rules –knowing
that n is the number of sites. The number of rules is not exactly equal to n
because the confidence coefficient determination process could fail in certain
circumstances, due to a lack of cover, and consequently the rule in question
would be ignored. Besides, by gathering the sets Ri, a rule can appear in more
than one base classifier. In this case, only one occurrence of the rule is kept by
assigning it with a confidence coefficient equal to the mean of the confidence
coefficients of its various occurrences.

From a descriptive point of view, the rules that cover an object propose our
explanation as to why the object belongs to the class, even in the case of a tie of
the simple and/or the weighted majority vote. As the whole system is developed
as support to decision-making, the rules covering an object may be proposed to
the user who could then judge, from his expertise, of their relevance. Presenting
to a decision maker more than one rule in order to explain the class of an object
may have its advantages since this provides a larger and more complete view of
the “limits” of each class. We bring to mind, that in machine learning, the limit

1 However, in a tie situation, we propose to carry out a simple majority vote. In rare
cases, when the simple majority vote leads to a tie, we choose the majority class in
the different training sets.
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which defines separation between various classes is generally not unique nor clear
cut, and consequently, several rules producing the same class can represent the
“hyper-planes” separating the various classes, providing various views on the
data.

3.4 The Use of a Galois Lattice to Validate Rules in a Meta-classifier

This validation process starts by creating a binary relation I defined over Rt ×S
where, at each intersection (ri, sj), we find 0 if ri does not cover sj , 1 otherwise
(See (1)).

I = {< r, s, f(r, s) > | r ∈ Rt, s ∈ S, f(r, s) ∈ {0, 1}} (1)

This binary relation is used as a context in order to build a Galois lattice
G. Consequently, each formal concept (Rules, Objects) of G contains maximal
pairs (closed sets) of objects and rules covering them. Thus, the obtained lattice
represents a preset hierarchy of generalization/specialization of maximal pairs
of rules and objects that they cover. The produced meta-classified is the set of
rules RG

t .

Terminology. In order to simplify the presentation of the algorithm that uses
G to validate the rules, we present some notation and terminology:

1. Our algorithm manipulates only binary databases denoting by “+” and “−”
(positive and negative class) the two classes of the data set. Nevertheless, it
could be extended to handle multiple class systems.

2. We note by cpt a concept of the lattice, Rcpt its extension and Ocpt its
intention.

3. We call a positive rule (resp. a negative rule), a rule having the positive
(resp. negative) class as conclusion.

4. We borrow some notation and terminology from [16], as we call the least
concept the bottom most concept of the lattice. It contains no rules and all
the objects. Dually, we call the largest concept the upper most concept of
the lattice. It contains all the rules and no objects.

5. We note by NbRules(ARuleSet) (resp. NbObjects(AnObjectSet)) the func-
tion that returns the number of rules in the rule set ARuleSet (resp. objects
in the set of objects AnObjectSet).

6. We note by RulesOfTheClass(ARuleSet, clas) the function that returns
rules of the set ARuleSet belonging to the class clas (clas ∈ {+, −}). The
result is a set of rules.

7. We note by ObjectsOfTheClass(AnObjectSet, clas) the function that re-
turns objects of the set AnObjectSet belonging to the class clas. The result
is a set of objects.

8. NbObjects(ObjectsOfTheClass(Ocpt, +)) (resp.
NbObjects(ObjectsOfTheClass(Ocpt, −))) is abbreviated by NbObj+

cpt

(resp. NbObj−cpt).
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9. NbRules(RulesOfTheClass(Rcpt, +)) (resp.
NbRules(RulesOfTheClass(Rcpt, −))) is abbreviated by NbRules+

cpt

(resp. NbRules−cpt).

How to Use a Concept Lattice. We bring to mind that we use a concept
lattice in order to validate the rules of Rt that statistically (according to the
confidence coefficient) should behave well when faced with new objects. This
validation consists in choosing among rules that do not correctly predict the
class of objects of S those to keep in the final meta-classifier RG

t . In other words,
it consists in identifying rules to delete from Rt so that each conflicting rule is
assessed. The successful rules are assigned to RG

t .
To achieve its task, the validation algorithm starts by identifying concepts

having conflicting rules. To do this, we compute for each concept the number
of positive rules (NbRules+

cpt), the number of negative rules (NbRules−cpt), the
number of objects belonging to the positive class (NbObj+

cpt), and the number
of objects belonging to the negative class (NbObj−cpt). Then we associate to each
concept a label (“+”, “−” or “?”) according to the majority of rules. The label
“?” is associated to a concept if the number of positive rules equals the number
of negative rules (See (2))

Label(cpt) =

⎧
⎨

⎩

+ If NbRules+
cpt > NbRules−cpt

− If NbRules+
cpt < NbRules−cpt

? Otherwise
(2)

We have to note that the labeling of concepts can be done during the con-
struction of the lattice, at a negligible cost. Once the labeling of concepts is
done, we could resume the algorithm as follows:

1. Go through the lattice from the least to the largest concept.
2. At the first concept containing rules in conflict, we identify rules belonging

to the minority class that we will call them problematic rules. These rules
are positive rules if the concept is labeled negative and vice-versa. If the
concept is labeled “?”, all its rules are considered problematic (See (3)). In
other words, problematic rules are rules that should not be in the concept
and hence, eventually, should not appear in the final meta-classifier.

PrbRules(cpt) =

⎧
⎨

⎩

RulesOfTheClass(Rcpt, +) If Label(cpt) = −
RulesOfTheClass(Rcpt, −) If Label(cpt) = +

Rcpt If Label(cpt) = ?
(3)

3. In order to assess the impact of suppressing a rule from the lattice, we
associate to each concept a cost function. Lets explain this function through
an example. Figure 3(b) details the class distribution of the concept of Fig
3(a). We can easily notice that rule F is a problematic one since it is in
conflict with rules C and E.

It is clear that suppressing rule F from this concept has a positive effect
or at least no effect, since the majority of objects and the majority of rules
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C, E, F 1, 11, 15, 18

(a) Example of a concept

C(+),E(+),F(−) 1(+),11(+),15(+),18(−)

(b) Class distribution in the concept

Fig. 3. An example of a concept from the lattice

belong to the positive class whereas F is a negative rule. And this is the case
of all problematic rules where by definition they are rules belonging to the
minority class. Consequently, the cost function for suppressing a problematic
rule is computed through out all concepts that contain it. Fortunately, the
lattice restrains our exploration of concepts where F appears, since only the
superconcepts of the bottom most concept containing the first occurrence of
the rule under consideration must be processed (See Fig. 4).

C,E,F 1,11,15,18

B,C,E,F 11,15,18A,C,E,F,G 1

Fig. 4. Example of superconcepts of the one of Fig. 3

4. The cost function that we propose represents the gain of objects correctly
classified minus the loss of objects incorrectly classified when the label of the
concept changes (designated by function MP ). In other words, suppose that
we suppress from the concept of Fig. 3 the rule C or E. In that case the label
of the concept passes from “+” to “?”. The cost of this action according to
our function is −3+1 = −2 since objects 1, 11 and 15 are no longer correctly
classified and the object 18 gains in classification since we consider that the
class “?” is closer to “−” than “+” is close to “−”.

5. For presentation purposes, we denote by cpt′ the concept cpt abated by
problematic rules. Hence, our cost function is defined as follows:

CostMP (cpt) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 If Label(cpt) = Label(cpt′)

NbObj−cpt − NbObj+
cpt If (Label(cpt), Label(cpt′)) ∈

{(+, −), (+, ?), (?, −)}

NbObj+
cpt − NbObj−cpt If (Label(cpt), Label(cpt′)) ∈

{(−, +), (−, ?), (?, +)}

6. This cost is iteratively repeated on the remaining of the lattice by suppress-
ing the same rule already identified as problematic. If the final cost over
the lattice is positive, thus it is advantageous to eliminate the rule from the
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concept and vice versa. If the final cost equals zero it is neither advanta-
geous nor disadvantageous to keep or to ignore the rule. Actually, keeping
or ignoring these rules (that we call “limit rules”) produces two variants of
cost function according to the decision taken about these rules.

7. The process of identifying problematic rules and computing the result of the
cost function is also done over all possible combinations of problematic rules
in one concept. So 2p − 1 rule subsets could be assessed if p is the number
of problematic rules (obviously, the empty set is ignored). In other words,
if in one concept there is more than one problematic rule, we compute the
powerset of problematic rules and then for each set from the powerset the
process described above is conducted.

Cost Functions. The first variant of the cost function is deduced from the use
of the label “?” where it can be considered as an intermediate class between the
“+” and “−”. This function is designated by MPQM . Thus when the label of a
concept goes from “−” to “+” by removing rules identified as problematic, the
cost function returns twice the difference between positive and negative objects
and vice versa. Whereas, when “?” appears as the label of the concept before or
after removing problematic rules, the cost function returns a simple difference.

Another variant of cost function could be proposed by considering only the
sign of the difference. Thus this binary function (designated by function BIN)
return only +1, −1 or 0 according to the sign of the difference and the change
of label.

The last variant proposed is deduced from the BIN function when considering
“?” as an intermediate class. Thus, when the label changes going from “+” to
“−” or inversely, the BINQM function returns ±2, otherwise it returns ±1 or
0 if there is no label change.

Advantages of Using the Galois Lattice. The Hass diagram of the Ga-
lois lattice constitutes a hierarchy of generalization/specialization of the rules
and objects that they cover. This hierarchy presents various advantages. We
enumerate a few of them hereafter:

– If there exist two rules covering the same object but predicting different
classes, called rules in conflict, these rules will necessarily appear in at least
one concept of the lattice. In these concepts we find all rules in conflict, and
the objects that they cover.

– In order to delete a rule r from the lattice, we do not need to visit each
concept. We must just find the first concept that contains the first occurrence
of r when we go upwards in the lattice. Then, all the occurrences of this rule
will be in concepts that are superconcepts of the latter one. This is due to
the structure of the lattice, where when we go up from the least concept
to the largest one, the extension of a concept (i.e., rules) is enriched while
intention (i.e., objects) is impoverished. In other words, when we go up in
the lattice, the number of rules increases thus together they will cover fewer
objects.
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– Rules in a concept are coded by their numbers. Thus their treatment is very
fast since the coverage of each rule is already computed and stored in the
lattice. The only information that we may need, the conclusion of the rule,
could be obtained instantly.

3.5 The Use of Samples as a Test Set to Validate Rules in a
Meta-classifier

The main idea of this validation process is the following: rules that come out
of the filtering process are those having a high confidence coefficient and thus
they should demonstrate a good predictive accuracy when tackling new objects.
Consequently, when these rules are assessed on a new test set, we can ignore
those that do not satisfy our expectations.

For that, this validation process uses S as a test set and computes for each
rule of Rt a new error rate called ES

r (S) [17] [12] [15]. Since we assume that we
should keep only very good rules, this validation process ignores rules having an
error rate ES

r (S) greater than a threshold tS . The produced meta-classifier is
the rule set RS

t (See (4)).

RS
t =

{
rik ∈ Rt | ES

rik
(S) ≤ tS

}
(4)

4 Experiments

To assess the performance of our meta-learning method, we conducted a battery
of tests in order to assess its prediction rate (accuracy) and its size (i.e., the
number of rules it produces). We compared it to a C4.5 algorithm built on the
whole data set, i.e., the aggregation of the distributed databases. This C4.5,
produces the rule set R′, which is used as a reference for its accuracy rate since
we assumed in the introduction that it is impossible to gather all these bases
onto the same site, and this, either because of downloading time, or because of
the difficulty to learn from the aggregated base because of its size. The set R′ is
supposed to represent the ideal case because, theoretically, when the size of data
increases, the resulting classifier will be more representative of the data set.

Exp. 1: Find the best threshold t for producing the meta-classifier Rt.
Exp. 2: Find the best pair (t, Costfunction) for producing RG

t .
Exp. 3: Find the best pair (t, tS) for producing RS

t .
Exp. 4: Compare R, Rt, RG

t and RS
t to R′ on the basis of accuracy.

Exp. 5: Compare R, Rt, RG
t and RS

t to R′ on the basis of the size of their rule
set.

All these experiments were run on ten data sets: adult, chess end-game
(King+Rook versus King+Pawn), Crx, house-votes-84, ionosphere, mushroom,
pima-indians-diabetes, tic-tac-toe, Wisconsin Breast Cancer (BCW)[18] and Wis-
consin Diagnostic Breast Cancer (WDBC), taken from the UCI repository [19].
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The size of these data sets varies from 351 to 45222 objects. Furthermore, in or-
der to get more realistic data sets, we introduced noise in the ten aforementioned
databases, and this by reversing the class attribute2 of successively 10%, 20%,
25% and 30% of each data set objects. Hence, since for each data set we have,
in addition to the original set, 4 other noisy sets, the total number of databases
used for our tests is 50.

In order to simulate distributed data sets, we did the following. We divided
each database into a test set with proportion of 1/4. This data subset was used
as a test set. The remaining data subset (of proportion 3/4), was divided in its
turn randomly into 2, 3, 4 or 5 data subsets in order to simulate distributed
databases. The size of these bases was chosen to be disparate and in such a way
that there was a significant difference between the smallest and the biggest data
subset. Figure 5 shows an example of such subdivision.

(3/4=4452 objets)

mush3.test (2670 obj.) = mush1.data + mush2.data

mush2.test (2817 obj.) = mush1.data + mush3.data

mush1.test (3417 obj.) = mush2.data + mush3.data

mush3.data (1782 obj.)mush2.data (1635 obj.)

(1/4=1484 objets)

mushroom.data

mushTest.datamushTest.test

mush1.data (1035 obj.)

(5936 objets)

Fig. 5. Example of subdivision for a database from the UCI

For the construction of the base classifiers we used C4.5 release 8 [20] which
produces a decision tree that is then directly transformed into a set of rules. For
the concept lattice construction we used the algorithm proposed in [21].

4.1 Experiment 1: Best Parameter t for Rt

In order to find the best t for Rt, we tried all values ranging from 0.95 to 0.20,
with decrements of 0.05 and 0.01. The analysis of results that we got for Rt over
the 50 data sets show that the minimum error rate of Rt is obtained in almost
all the cases with the threshold t = 0.95 or t = 0.01. When this is not the case,
the error rate of Rt, with t = 0.95 or t = 0.01, is worse than the minimum error
rate by no more than 0.1% except for the Pima-Indians original database where
the difference is 1%.

The choice of a high threshold (such as 0.95) suggests that keeping only rules
with a high value of the confidence coefficient produces good results. Moreover,
a threshold as low as 0.01 signifies that the aggregation of almost all the rules
produces also good results thanks to the weighted majority vote. So weighting
2 Please note that i) all data sets have a binary class attribute ii) we deleted from

these data sets objects with missing values .
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the rules by this confidence coefficient seems to be quite sufficient to provide our
method with a satisfactory accuracy rate.

In order to choose between these two thresholds, we draw a table of the number
of tests for which they produced the minimum error rate. In the case where the
best accuracy is obtained with t′ which was neither 0.01 nor 0.95, we associated
t′ with the closer of the two thresholds 0.01 or 0.95.

Table 1. Number of occurrences of the minimum of Rt error rate with t = 0.01 and
t = 0.95

Databases Min with 0.01 Min with 0.95 Constant error rate

Original databases 6 3 2

10% noisy DB 3 3 4

20% noisy DB 4 1 5

25% noisy DB 3 5 3

30% noisy DB 4 3 3

TOTAL 20 15 17

From table 1 we can choose the threshold 0.01 as the best one since it produces
the minimum error rate of Rt in the majority of the cases.

4.2 Experiment 2: Best Pair (t, CostFunction) for RG
t

We start by identifying the threshold t that produces the minimum error rate of
RG

t when considering the four cost functions (MP , MPQM , BIN and BINQM)
presented above with for each one a little variant by taking or ignoring limit rules
for a total of 8 functions. We conducted the same tests as with Rt. We found
that t = 0.01 produces a score of 124 occurrences of the minimum, whereas,
t = 0.95 produces a score of 116 occurrences. Consequently, we can assume that
the threshold t = 0.01 is the best for RG

t too. This is an interesting result, since
it proves that the proposed technique (thanks to the weighted majority vote
between conflicting rules) is robust faced to poor rules.

Once threshold t fixed, we have to find the best cost function. To do so, we
analyze Table 2 below. The best function is clearly “MPQM” or “MP” with
limit rules (LR). Functions “BINQM” and “BIN” with limit rules produce
also good results but they are slightly less efficient from a prediction point of
view than their competitors.

The most interesting conclusion that we can draw from these results is that
limit rules are very important and should be kept in the final meta-classifier,
even if the cost function did not succeeded to prove it. We recall to mind that a
cost function returns the value 0 for a limit rule.

4.3 Experiment 3: Best Pair (t, tS) for RS
t

For each value of threshold t (listed in §4.1), we assessed the refinement process
using S as a test set with threshold tS equal respectively to 2%, 5% and 10%.
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Table 2. Number of bases for which cost functions produce the lowest RG
t error rate

Original 10% 20% 25% 30% Σ
DB noisy DB noisy DB noisy DB noisy DB

MPQM with LR 4 5 4 3 2 18
MPQM without LR 3 4 1 3 2 13

MP with LR 4 5 4 4 2 19
MP without LR 3 4 1 3 2 13

BINQM with LR 6 2 4 1 3 16

BINQM without LR 3 3 1 4 2 13

BIN with LR 6 2 3 1 4 16

BIN without LR 3 3 1 4 2 13

In order to find the best pair (t, tS) for RS
t , we started by finding the threshold

t producing most frequently the minimum error when using the three values of
threshold tS (2%, 5% and 10%). Then, we chose the best tS –i.e., producing the
lowest error rate– among the three values above.

To find the best t we conducted the same analysis as previously. The analysis
showed that the thresholds that most frequently produce the minimum error
rate for RS

t are t = 0.01 and t = 0.95. As we did for Rt, we drew tables showing
the number of times that these two values of t produce the lowest error rate
when tS equals respectively 2%, 5% and 10% (See Tab. 3).

Table 3. Total of the number of occurrences of the lowest error rate of RS
t with

tS ∈ {2%, 5%, 10%} and t ∈ {0.01, 0.95} computed over the 50 data sets

Min with 0.01 Min with 0.95 Constant error rate

tS = 2% 30 9 13

tS = 5% 18 13 22

tS = 10% 17 15 21

Total 65 37 56

Based on Table 3, it is obvious to conclude that t = 0.01 is the best threshold
since it frequently produces the lowest error with the three values of tS . This
result confirms our previous choices and results and it proves once again the
power of the weighted majority vote against poor rules.

Once threshold t fixed, we have to find threshold tS . To do so, we analyze
Table 4, which presents the number of bases for which tS produced the minimum
error rate of RS

t . A simple look to Table 4 shows that the best value of tS is 5%;
nevertheless, tS = 10% gives almost the same number of bases.

The very low number of bases obtained with tS = 2% indicates that a very
tight threshold tS will exclude some interesting rules which decreases the pre-
diction capacity of RS

t . In contrast, a slightly loose threshold as tS = 10% could
accept in RS

t some bad rules which also decreases the prediction capacity of the
meta-classifier.
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Table 4. Number of bases for which thresholds tS produce the lowest RS
t error rate

Original 10% 20% 25% 30% Σ
DB noisy DB noisy DB noisy DB noisy DB

tS = 2% 5 4 3 2 3 17

tS = 5% 7 8 10 10 9 44
tS = 10% 6 7 10 10 9 42

4.4 Experiment 4: Compare R, Rt, RG
t and RS

t to R′ on the Basis
of Accuracy

Once parameters for Rt, RG
t and RS

t has been found, we can compare the pre-
diction performance of our meta-classifiers R, Rt, RG

t and RS
t to the classifier

R′ used as reference since it is the ideal case. To do so, we compare R′ with its
error rate confidence interval (lower and upper bounds) computed at 95% confi-
dence to our meta-classifiers using their respective optimal parameters, over the
original databases and over the noisy databases.

As a detailed citation of these results needs more than a few pages, we will
restrain our presentation to the most important results. Indeed, we can resume
our observations to the following:

1. The prediction performance of R is very comparable to that of R′ since in
34 cases over 50, the error rate of R is statistically comparable (with 95%
confidence) to that of R′. It worsens only in 5 cases but it improves in 11
cases.

2. The sets R and Rt have sensibly the same error rate except for 6 cases where
in two of them the error rate of Rt is worse than that of R by no more than
0.1% (which is not a significant difference) and in the 4 other cases Rt do
better than R with an error rate difference ranging from 1.1% to 3%. Hence,
we can conclude that Rt, in general, does predict as well as R or better.

3. Globally, Rt and RG
t present comparable prediction performance. Indeed,

over the 50 data sets, RG
t presents exactly the same error rate over 30 data

sets, better error rate for 11 data sets with a difference of at most 4.7% and
a worse error rate for only 9 cases with a difference of at most 2.1%.

4. The prediction performance of RG
t is slightly better than the one of RS

t since
in 38 cases over 50, the difference of error rates of these rule sets is null or
less than 1%. The error rate of RG

t is better in 8 cases by a difference ranging
from 1.1% to 4.3%. It is worst in 4 cases by a difference ranging from 1.2%
to 4.2%.

5. When databases are very noisy, our meta-classifiers R, Rt, RG
t and RS

t pro-
duce better error rates (statistically, with confidence of 95%) than R′.

On the light of these results, we can conclude that the proposed meta-
classifiers (R, Rt, RG

t and RS
t ) present globally comparable prediction perfor-

mance, nonetheless, RG
t is slightly better than RS

t which proves that a tight
fine-tuning of rules using a Galois lattice is better than a simple filter using a
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threshold. Moreover, the error rates of our meta-classifiers are comparable to R′,
but that of our meta-classifiers outperform R′ as noise increases in the data set.

The reader should notice that even if Rt or RG
t or RS

t does not significantly
improve R in terms of its error rate, applying the threshold t then validating
rules offers some advantages, like decreasing the meta-classifier size (as we will
see below).

4.5 Experiment 5: Compare R, Rt, RG
t and RS

t to R′ on the Basis
of the Size of Their Rule Set

Table 5 presents the number of rules in the classifiers: R′, R, Rt, RG
t and RS

t . It
is clear from this table that R, Rt, RG

t and RS
t have a relatively low number of

rules which is in certain circumstances inferior that the number of rules in our
reference classifier R′. This result is very encouraging since our meta-classifier
can be seen as neither more difficult nor easier to interpret than R′.

Table 5. The number of rules in each rule set

Adult BCW Chess Crx Iono. Mush. Pima. Tic. Vote Wdbc

R′ 523 10 31 25 7 24 21 69 5 11

R 592 50 54 23 11 11 30 77 10 18

Rt 482 33 54 20 9 11 26 64 6 17

RG
t 469 32 46 19 9 11 26 61 6 17

RS
t 408 31 46 16 8 11 13 51 5 15

Moreover, we can easily observe that the refinement step as well as the val-
idation steps are very useful since they can reduce the number of rules in R
significantly. For instance, the rule set size reduction of RG

t is up to 40% with
Vote data set (36%, 21% and 21% for respectively BCW, Adult and Tic-Tac-Toe
data sets). The reduction of the size of RS

t reaches the 57% with Pima-Indians
data set. Besides, it is clear from Table 5 that the validation process using S
as a test set eliminates more rules than the one using a Galois lattice. Unfortu-
nately, the high reduction in rule set size of RS

t comes with a slightly decrease
in prediction performance compared to RG

t , as we saw previously.

5 Conclusion

We presented in this paper a distributed data mining technique that goes globally
through two steps. The first one is to mine in a distributed manner, each data
set, then in a centralized site information gathered from the first process is
aggregated. The resulting meta-classifier is as a rule set that can be refined and
validated. This paper dealt especially with the validation step where we proposed
two validation processes: A simple one and a Galois lattice based one.

We have demonstrated in this paper that concept lattices could be very useful
in DDM. Indeed, from a prediction point of view a validated meta-classifier
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(i.e., rules of the meta-classifier are validated by a concept lattice) performs as
well as or even better, than a classifier built on the whole data set, which is used
as a reference, depending on the level of noise in it. Moreover, from a description
point of view (i.e., number of rules in the classifier), the size of validated meta-
classifier is usually comparable to that of the reference centralized classifier.
When we compare the simple rule sets aggregation with this set refined then
validated by a Galois lattice, a significant decrease of the set of rules (up to
40%) could be observed.

The simple validation process proposed in this paper do almost as good as
the Galois lattice based one: the prediction performance of RG

t is slightly better
than RS

t but the size of the latter rule set is lower than the size of the first
one. These results are very interesting since we offer to a decision maker two
validation techniques where the first one optimizes the meta-classifier size and
the second one optimizes its prediction capabilities.

Currently, we are working on the design of a smart validation process that
dynamically chooses the more appropriate validation process to use, according
to the prevailing circumstances pertaining to the nature of the data set. This
work will be presented in a forthcoming paper.
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Abstract. We present graded extension of the algorithm LinClosure.
Graded LinClosure can be used to compute degrees of semantic en-
tailment from sets of fuzzy attribute implications. It can also be used
together with graded extension of Ganter’s NextClosure algorithm to
compute non-redundant bases of data tables with fuzzy attributes. We
present foundations, the algorithm, and illustrative examples.

1 Introduction

Fuzzy logic is a formal framework for dealing with a particular type of impreci-
sion. A key idea of fuzzy logic is a graded approach to truth in which we allow
for truth degrees other than 0 (falsity) and 1 (full truth). This enables us to
consider truth of propositions to various degrees, e.g., proposition “Peter is old”
can be assigned a degree 0.8, indicating that “Peter is old” is almost (fully) true.
One way of looking at the proposition “Peter is old” being true to degree 0.8 is
that it expresses a graded attribute “being old to degree 0.8” of the object “Pe-
ter”. When dealing with multiple graded attributes, we often need to determine
their dependencies. In [2,5] we have introduced fuzzy attribute implications as
particular dependencies between graded attributes in data sets representing ob-
jects and their graded attributes (so-called data tables with fuzzy attributes). A
fuzzy attribute implication can be seen as a rule of the form “A ⇒ B”, saying
“for each object from the data set: if the object has all graded attributes from
A, then it has all graded attributes from B”. We have proposed several ways
to compute, given an input data set represented by a data tables with fuzzy
attributes, a minimal set of dependencies describing all dependencies which are
valid (true) in the table, see [7] for a survey.

In this paper we focus on computational aspects of one of the algorithms
proposed so far. Namely, we show how to compute fixed points of certain fuzzy
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closure operators that appear in algorithms from [2,11]. We introduce an ex-
tended version of the LinClosure algorithm which is well known from database
systems [22]. Compared to the original LinClosure, our extended algorithm,
called a Graded LinClosure (shortly, a GLinClosure) is more versatile (this
is discussed in Section 3) while having the same asymptotic time complexity as
LinClosure. This is an important feature since it is often the case that fuzzy
logic extensions of classical algorithms proposed in the literature are of signif-
icantly higher time complexity than their classical counterparts. Since there is
a close relationship between dependencies in data tables with fuzzy attributes
and data tables over domains with similarity relations, one can also use GLin-

Closure for computing functional dependencies in data tables over domains
with similarity relations. The latter naturally appear in an extension of Codd’s
relational model which takes into account similarities on domains, see [8,9].

2 Preliminaries and Motivation

In this section we present preliminaries of fuzzy logic and basic notions of fuzzy
attribute implications which will be used in further sections. More details can
be found in [1,17,19,21,23] and [2,5,7]. In Section 2.2 we also present motivations
for developing LinClosure in fuzzy setting.

2.1 Fuzzy Logic and Fuzzy Set Theory

Since fuzzy logic and fuzzy sets are developed using general structures of truth
degrees, we first introduce structures of truth degrees which are used in our
approach. Our basic structures of truth degrees will be so-called complete resid-
uated lattices with hedges, see [1,17,19,20,23]. A complete residuated lattice with
hedge is an algebra L = 〈L, ∧, ∨, ⊗, →, ∗, 0, 1〉 such that

(i) 〈L, ∧, ∨, 0, 1〉 is a complete lattice with 0 and 1 being the least and greatest
element of L, respectively;

(ii) 〈L, ⊗, 1〉 is a commutative monoid (i.e., ⊗ is commutative, associative, and
for each a ∈ L we have a ⊗ 1 = 1 ⊗ a = a);

(iii) ⊗ and → satisfy so-called adjointness property: a ⊗ b ≤ c iff a ≤ b → c is
true for each a, b, c ∈ L;

(iv) hedge ∗ is a unary operation ∗ : L → L satisfying, for each a, b ∈ L:
(1) 1∗ = 1; (2) a∗ ≤ a; (3) (a → b)∗ ≤ a∗ → b∗; (4) a∗∗ = a∗.

Operations ⊗ and → are (truth functions of) “fuzzy conjunction” and “fuzzy
implication”. Hedge ∗ is a (truth function of) logical connective “very true” and
properties of hedges have natural interpretations [19,20]. A common choice of
L is a structure with L = [0, 1] (real unit interval), ∧ and ∨ being minimum
and maximum, ⊗ being a left-continuous t-norm with the corresponding →.
Three most important pairs of adjoint operations on [0, 1] are �Lukasiewicz, Gödel,
and Goguen (product), see [1] for details. Complete residuated lattices include
also finite structures of truth degrees. For instance, one can put L = {a0 =
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0, a1, . . . , an = 1} ⊆ [0, 1] (a0 < · · · < an) with ⊗ given by ak⊗al = amax(k+l−n,0)

and the corresponding → given by ak → al = amin(n−k+l,n). Such an L is called
a finite �Lukasiewicz chain. Another possibility is a finite Gödel chain which
consists of L and restrictions of Gödel operations on [0, 1] to L. A special case
of a complete residuated lattice with hedge is the two-element Boolean algebra
2 (structure of truth degrees of classical logic). Two boundary cases of hedges
are (i) identity, i.e. a∗ = a (a ∈ L); (ii) so-called globalization [25]:

a∗ =
{

1 if a = 1,
0 otherwise. (1)

Moreover, for each L we consider a derived truth function � defined by

a � b = a ⊗ ((a → b)∗ → 0). (2)

For ∗ being globalization, a � b simplifies as follows:

a � b =
{

0 if a ≤ b,
a else. (3)

Remark 1. Note that the derived truth function � can be seen as a particular
subtraction of truth degrees because a ⊗ ((a → b)∗ → 0) can be described as
a degree to which “a is true and it is not (very) true that b is greater than
a”. The meaning of � as a type of subtraction is apparent especially in case of
globalization, see (3). Due to (3), the result of a � b is 0 if b is greater than a.
We will comment on the purpose of � later on.

Until otherwise mentioned, we assume that L denotes a complete residuated
lattice (with hedge ∗) which serves as a structure of truth degrees. Using L, we
define the following notions. An L-set (a fuzzy set) A in universe U is a mapping
A : U → L, A(u) being interpreted as “the degree to which u belongs to A”. If
U is a finite universe U = {u1, . . . , un} then an L-set A in U can be denoted
by A = {a1/u1, . . . ,

an/un}, meaning that A(ui) equals ai (i = 1, . . . , n). For
brevity, we introduce the following convention: we write {. . . , u, . . . } instead of
{. . . , 1/u, . . .}, and we also omit elements of U whose membership degree is zero.
For example, we write {u, 0.5/v} instead of {1/u, 0.5/v, 0/w}, etc. Let LU denote
the collection of all L-sets in U . Denote by |A| the cardinality of the support
set of A, i.e. |A| = |{u ∈ U | A(u) > 0}|. The operations with L-sets are defined
componentwise. For instance, the union of L-sets A, B ∈ LU is an L-set A ∪ B
in U such that (A ∪ B)(u) = A(u) ∨ B(u) (u ∈ U). Due to (3), for ∗ being
globalization, we get

(A � B)(u) =
{

0 if A(u) ≤ B(u),
A(u) else. (4)

Remark 2. Fuzzy set A � B can be interpreted as follows. A degree (A � B)(u)
to which u ∈ U belongs to A�B is a truth degree to which “u belongs to A and
u does not belong to B at least to which it belongs to A”. Think of A as of a
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fuzzy set assigning to each u ∈ U a threshold degree A(u). Then if B(u) exceeds
the threshold given by A(u), element u will not be present in the resulting fuzzy
set A�B (it means that (A�B)(u) = 0), i.e. “u will be removed”. If B(u) does
not exceed the threshold, we have (A�B)(u) = A(u), i.e. “u will be preserved”.

For a ∈ L and A ∈ LU , we define an L-set a⊗A (a-multiple of A) by (a⊗A)(u) =
a ⊗ A(u), for each u ∈ U . Binary L-relations (binary fuzzy relations) between
U and V can be thought of as L-sets in U × V . For A, B ∈ LU , we define
S(A, B) ∈ L by

S(A, B) =
∧

u∈U

(
A(u) → B(u)

)
. (5)

S(A, B) is called a subsethood degree of A in B and it generalizes the classical
subsethood relation ⊆ in a fuzzy setting. In particular, if L (structure of truth
degrees) is 2 (two-element Boolean algebra), then 2-sets coincide in an obvious
manner with (characteristic functions of) ordinary sets. Also, in case of L = 2 we
have that S(A, B) = 1 iff A ⊆ B. For general L, we write A ⊆ B iff S(A, B) = 1;
and A ⊂ B iff S(A, B) = 1 and A �= B. As a consequence of properties of →
and

∧
, we get that A ⊆ B iff A(u) ≤ B(u) for each u ∈ U , see [1,17,21].

A fuzzy closure operator with hedge ∗ (shortly, a fuzzy closure operator) [3]
on a set U is a mapping C : LU → LU satisfying, for each A, B1, B2 ∈ LU :
A ⊆ C(A), S(B1, B2)∗ ≤ S(C(B1), C(B2)), and C(A) = C(C(A)).

2.2 Fuzzy Attribute Implications

Let Y denote a finite set of attributes. Each L-set M ∈ LY of attributes can
be seen as a set of graded attributes because M prescribes, for each attribute
y ∈ Y , a degree M(y) ∈ L. A fuzzy attribute implication (over attributes Y )
is an expression A ⇒ B, where A, B ∈ LY are fuzzy sets of attributes. Fuzzy
attribute implications (FAIs) represent particular data dependencies. The in-
tuitive meaning we wish to give to A ⇒ B is: “if it is (very) true that an
object has all (graded) attributes from A, then it has also all (graded) attributes
from B”. Formally, for an L-set M ∈ LY of attributes, we define a truth degree
||A ⇒ B||M ∈ L to which A ⇒ B is true in M by

||A ⇒ B||M = S(A, M)∗ → S(B, M), (6)

with S(· · ·) defined by (5). The degree ||A ⇒ B||M can be understood as fol-
lows: if M (semantic component) represents presence of attributes of some ob-
ject, i.e. M(y) is truth degree to which “the object has the attribute y ∈ Y ”,
then ||A ⇒ B||M is the truth degree to which “if the object has all attributes
from A, then it has all attributes from B”, which corresponds to the desired
interpretation of A ⇒ B. Note also that the hedge ∗ present in (6) serves as a
modifier of interpretation of A ⇒ B and plays an important technical role. If ∗

is globalization, i.e. if ∗ is defined by (1), then ||A ⇒ B||M = 1 (i.e., A ⇒ B is
fully true in M) iff we have:

if A ⊆ M, then B ⊆ M. (7)
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More information about the role of hedges can be found in [2,5,7]. See also [24]
for a related approach.

Let T be a set of fuzzy attribute implications. An L-set M ∈ LY is called a
model of T if, for each A ⇒ B ∈ T , ||A ⇒ B||M = 1. The set of all models of T
will be denoted by Mod(T ), i.e.

Mod(T ) = {M ∈ LY | for each A ⇒ B ∈ T : ||A ⇒ B||M = 1}. (8)

A degree ||A ⇒ B||T to which A ⇒ B semantically follows from T is defined by

||A ⇒ B||T =
∧

M∈Mod(T ) ||A ⇒ B||M . (9)

Described verbally, ||A ⇒ B||T is defined to be the degree to which “A ⇒ B is
true in each model of T ”. Hence, degrees ||· · ·||T defined by (9) represent degrees
of semantic entailment from T . Let us note that degrees ||· · ·||T can also be fully
described via the (syntactic) concept of a provability degree, see [7,12].

The set Mod(T ) of all models of T form a particular fuzzy closure system in
Y , see [11] for details. Thus, for each L-set M ∈ LY we can consider its closure in
Mod(T ) which is then the least model of T containing M . The closure operator
associated with Mod(T ) can be described as follows. First, for any set T of FAIs
and any L-set M ∈ LY of attributes define an L-set MT ∈ LY of attributes by

MT = M ∪
⋃

{S(A, M)∗ ⊗ B | A ⇒ B ∈ T }. (10)

Note that if ∗ is globalization, (10) simplifies as follows:

MT = M ∪
⋃

{B | A ⇒ B ∈ T and A ⊆ M}. (11)

Using (10), for each n ∈ N0 we define a fuzzy set MTn ∈ LY of attributes by

MTn =
{

M for n = 0
(MTn−1)T for n ≥ 1.

(12)

Finally, we define an operator clT : LY → LY by

clT (M) =
⋃∞

n=0 MTn . (13)

The following assertion shows the importance of clT .

Theorem 1 (see [11]). Let L be a finite residuated lattice with hedge, T be a
set of fuzzy attribute implications. Then

(i) clT defined by (13) is a fuzzy closure operator;
(ii) clT (M) is the least model of T containing M , i.e. clT (M) ∈ Mod(T ) and,

for each N ∈ Mod(T ), if M ⊆ N then clT (M) ⊆ N ;
(iii) ||A ⇒ B||T = S(B, clT (A)). ��
Remark 3. Note that Theorem 1 (iii) says that degrees of semantic entailment
from sets of fuzzy attribute implications can be expressed as subsethood degrees
of consequents of FAIs into least models generated by antecedents of FAIs. Hence,
a single model of T suffices to express the degree ||A ⇒ B||T , cf. definition (9).
In other words, an efficient procedure for computing of closures clT (· · ·) would
give us an efficient procedure to compute degrees of semantic entailment.
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Another area in which a closure operator similar to (13) appears is the com-
putation of non-redundant bases of data tables with fuzzy attributes. A data
table with fuzzy attributes is a triplet 〈X, Y, I〉 where X is a set of objects, Y is a
finite set of attributes (the same as above), and I ∈ LX×Y is a binary L-relation
between X and Y assigning to each object x ∈ X and each attribute y ∈ Y a
degree I(x, y) to which “object x has attribute y”. 〈X, Y, I〉 can be thought of
as a table with rows and columns corresponding to objects x ∈ X and attributes
y ∈ Y , respectively, and table entries containing degrees I(x, y). A row of a table
〈X, Y, I〉 corresponding to an object x ∈ X can be seen as a set Ix of graded
attributes (a fuzzy set of attributes) to which an attribute y ∈ Y belongs to a
degree Ix(y) = I(x, y). Furthermore, a degree ||A ⇒ B||〈X,Y,I〉 to which A ⇒ B
is true in data table 〈X, Y, I〉 is defined by

||A ⇒ B||〈X,Y,I〉 =
∧

x∈X ||A ⇒ B||Ix . (14)

By definition, ||A ⇒ B||〈X,Y,I〉 is a degree to which “A ⇒ B is true in each row
of table 〈X, Y, I〉”, i.e. a truth degree of “for each object x ∈ X : if it is (very)
true that x has all attributes from A, then x has all attributes from B”. A set
T of FAIs is called complete in 〈X, Y, I〉 if ||A ⇒ B||T = ||A ⇒ B||〈X,Y,I〉, i.e.
if, for each A ⇒ B, a degree to which T entails A ⇒ B coincides with a degree
to which A ⇒ B is true in 〈X, Y, I〉. If T is complete and no proper subset of T
is complete, then T is called a non-redundant basis of 〈X, Y, I〉. Note that both
the notions of a complete set and a non-redundant basis refer to a given data
table with fuzzy attributes.

In order to describe particular non-redundant bases of data tables with fuzzy
attributes we need to recall basic notions of formal concept analysis of data
tables with fuzzy attributes [4,7]. Given a data table 〈X, Y, I〉, for A ∈ LX ,
B ∈ LY we define A↑ ∈ LY and B↓ ∈ LX by

A↑(y) =
∧

x∈X(A(x)∗ → I(x, y)), (15)

B↓(x) =
∧

y∈Y (B(y) → I(x, y)). (16)

Operators ↓, ↑ form so-called Galois connection with hedge, see [4]. The set
of all fixed points of ↓, ↑ (so-called fuzzy concepts) hierarchically ordered by
a subconcept-superconcept relation is called a fuzzy concept lattice with hedge,
see [4,7]. A crucial role in determining a non-redundant basis of a given 〈X, Y, I〉
is played by an operator which is a modification of clT , see (13). The modified
operator can be described as follows. For M ∈ LY put

MT ∗
= M ∪

⋃
{S(A, M)∗ ⊗ B | A ⇒ B ∈ T and A �= M}. (17)

If ∗ is globalization, (17) is equivalent to

MT ∗
= M ∪

⋃
{B | A ⇒ B ∈ T and A ⊂ M}. (18)
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We can now define an operator clT ∗ in much the same way as clT :

MT ∗
n =

{
M for n = 0
(MT ∗

n−1)T ∗
for n ≥ 1,

(19)

clT ∗(M) =
⋃∞

n=0 MT ∗
n . (20)

For clT ∗ defined by (19), we have the following

Theorem 2 (see [2,5,7]). Let L be a finite residuated lattice with globalization,
〈X, Y, I〉 be a data table with fuzzy attributes. Then there is T such that

(i) clT ∗ is a fuzzy closure operator;
(ii) a set of FAIs defined by {P ⇒ P ↓↑ | P = clT ∗(P ) and P �= P ↓↑}

is a non-redundant basis of 〈X, Y, I〉. ��

Remark 4. From Theorem 2 it follows that for ∗ being globalization a non-
redundant basis of 〈X, Y, I〉 is determined by particular fixed points of clT ∗ ,
namely, by fuzzy sets P ∈ LY of attributes such that P = clT ∗(P ) and P �= P ↓↑.
The basis given by Theorem 2 is also a minimal one, i.e. each set of fuzzy at-
tribute implications which is complete in 〈X, Y, I〉 has at least the same number
of FAIs as the basis given by 2, see [5]. Notice that we have not specified the set
T of fuzzy attribute implications which is used by clT ∗ . A detailed description
of that set is outside the scope of our paper, see [2,5,7]. An approach for general
hedges has been presented in [6,10]. Let us just mention that T is computa-
tionally tractable. Fuzzy sets of attributes satisfying P = clT ∗(P ) and P �= P ↓↑

will occasionally be referred to as pseudo-intents or pseudo-closed fuzzy set of
attributes. This is for the sake of consistency with [2,5,7], cf. also [14,15,16,18].

3 Graded LinClosure

Throughout this section, we assume that L is a finite linearly ordered residuated
lattice with globalization, see (1). Structure L represents a finite linear scale of
truth degrees.

Problem Setting. Given a fuzzy set M ∈ LY of attributes we wish to compute its
closures clT (M) and clT ∗(M) defined by (13) and (20), respectively. First, note
that clT and clT ∗ differ only in non-strict/strict fuzzy set inclusions “⊆” and
“⊂” used in (11) and (18). A direct method to compute clT (M) and clT ∗(M),
which is given by the definitions of clT and clT ∗ , leads to an algorithm similar to
Closure which is known from database systems [22]. In more detail: for a given
M , we iterate through all FAIs in T and for each A ⇒ B ∈ T we test if A ⊆ M
(A ⊂ M); if so, we add B to M (i.e., we set M := M ∪B) and repeat the process
until M cannot be enlarged; the resulting M is the closure under clT (clT ∗) of
the original fuzzy set M . Clearly, this procedure is sound. Let n be the number
of attributes in Y and p be the number of FAIs in T . In the worst case, we
have to make p2 iterations in order to compute the closure because in each loop
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through all FAIs in T there can be only one A ⇒ B such that A ⊆ M (A ⊂ M)
and B �⊆ M (i.e., only one FAI from T causes M to be enlarged). Moreover, for
each A ⇒ B we need n steps to check the non-strict/strict subsethood A ⊆ M
(A ⊂ M). To sum up, the complexity of this algorithm is O(np2), where n is the
number of attributes and p is the number of FAIs from T (cf. [22]).

In this section we present an improved version of the algorithm, so-called
GLinClosure (Graded LinClosure), which computes clT (M) and clT ∗(M)
with complexity O(n), where n is the size of the input. GLinClosure uses each
FAI from T only once and allows us to check the non-strict/strict inclusions
A ⊆ M (A ⊂ M) which appear in (11) and (18) in a constant time. Our algorithm
results by extending LinClosure [22] so that

(i) we can use fuzzy sets of attributes instead of classical sets (this brings new
technical problems with efficient comparing of truth degrees and checking of
strict inclusion, see below);

(ii) we can use the algorithm also to compute systems of pseudo-intents (i.e.,
fixed points of clT ∗), and thus non-redundant bases (the original LinClo-

sure [22] cannot be used to compute pseudo-intents [16], it can only compute
fixed points of the classical counterpart of clT ), this also brings technical
complications since we have to maintain a “waitlist of attributes” which can
possibly be updated (or not) in future iterations.

In what follows we present a detailed description of the algorithm and analysis
of its complexity.

Input and Output of the Algorithm. The input for GLinClosure consists of a set
T of fuzzy attribute implications over Y , a fuzzy set M ∈ LY of attributes, and
a flag PCLOSED ∈ {false, true}. The meaning of PCLOSED is the following.
If PCLOSED is set to true, the output of GLinClosure is clT ∗(M) (the least
fixed point of clT ∗ which contains M); if PCLOSED is set to false, the output
of GLinClosure is clT (M) (the least fixed point of clT , i.e. the least model of
T , which contains M).

Representation of Graded Attributes. During the computation, we represent
fuzzy sets (L-sets) of attributes in Y by ordinary sets of tuples 〈y, a〉, where y ∈ Y
and a ∈ L. Namely, a fuzzy set {a1/y1,

a2/y2, . . . ,
an/yn} (a1 �= 0, . . . , an �= 0) will

be represented by an ordinary set {〈y1, a1〉, 〈y2, a2〉, . . . , 〈yn, an〉}. We will use
both notations A(y) = a and 〈y, a〉 ∈ A. Whenever we consider 〈y, a〉, we assume
a �= 0. From the implementational point of view, we may represent fuzzy sets of
attributes by lists of tuples 〈y, a〉 instead of sets of such tuples. In such a case, we
write (〈y1, a1〉, 〈y2, a2〉, . . . , 〈yn, an〉) instead of {〈y1, a1〉, 〈y2, a2〉, . . . , 〈yn, an〉}.

Quick Test of Subsethood. We avoid repeated testing of inclusions in (11) and
(18) analogously as in the original LinClosure. For each fuzzy attribute im-
plication A ⇒ B from T we keep a record of the number of attributes due to
which A is not contained in the constructed closure. If this number reaches zero,
we get that A ⊆ M and we can process A ⇒ B, see (11). This suffices to check
non-strict subsethood which is needed to compute fixed points of clT . In order to
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check strict subsethood which is needed to compute clT ∗(M), we need to have a
quick test to decide if A ⊂ M provided we already know that A ⊆ M . The test
can be done with the following notion of cardinality of fuzzy sets. Take a fixed
monotone injective mapping fL : L → [0, 1]. That is, fL is injective, and for each
a, b ∈ L, if a ≤ b then fL(a) ≤ fL(b). For each fuzzy set M ∈ LY of attributes
we define a number card(M) ∈ [0, ∞) by

card(M) =
∑

〈y,a〉∈M fL(a). (21)

For instance, if L is a subset of [0, 1], we can put fL(a) = a (a ∈ L), and thus
card(M) =

∑
〈y,a〉∈M a.

Lemma 1. Let A, B ∈ LY s. t. A ⊆ B. Then A ⊂ B iff card(A) < card(B). ��

Remark 5. Note that checking strict inclusion in fuzzy setting is more difficult
that in the ordinary case where one can decide it simply by comparing numbers
of elements in both sets. In fuzzy setting, we can have fuzzy sets which have the
same number of elements belonging to the sets (to a non-zero degree) but the sets
may not be equal. For instance, if L = [0, 1], then A = {0.7/y, 0.5/z} and B =
{0.9/y, 0.5/z} both contain two elements (to a non-zero degree), i.e. |A| = |B| = 2
(see preliminaries). Hence, the values of |· · ·| alone are not sufficient to decide
A ⊂ B provided that A ⊆ B. This is why we have introduced “cardinalities”
by (21).

Data Structures Used During the Computation:

NEWDEP is a fuzzy set of attributes which is the closure being constructed;
CARDND is the cardinality of NEWDEP given by (21);
COUNT [A ⇒ B] is a nonnegative integer indicating the number of attributes

from A such that A(y) > NEWDEP(y), COUNT [A ⇒ B] = 0 means that
A is a subset of NEWDEP ;

CARD [A ⇒ B] is a number indicating cardinality of A, it is used to decide if A
is strictly contained in NEWDEP when COUNT [A ⇒ B] reaches zero;

UPDATE is a fuzzy set of attributes which are waiting for update;
WAITLIST is a list of (pointers to) fuzzy sets of attributes which can be added

to NEWDEP as soon as NEWDEP will increase its cardinality; this is nec-
essary if PCLOSED = true, WAITLIST is not used if PCLOSED = false;

LIST [y] is an attribute-indexed collection of (pointers to) FAIs from T such
that A ⇒ B is referenced in LIST [y] iff A(y) > 0;

SKIP [y][A ⇒ B] ∈ {false, true} indicates whether attribute y has already been
updated in A⇒B (SKIP [y][A⇒B]= true) or not (SKIP [y][A⇒B]= false);
SKIP is necessary in graded setting to avoid updating an attribute twice
which may result in incorrect values of COUNT [A ⇒ B];

DEGREE [y][A ⇒ B] represents a degree in which attribute y is contained in A;
() denotes the empty list.

Note that NEWDEP , UPDATE , COUNT , and LIST play a similar role as in
LinClosure, cf. [22]. The algorithm is depicted in Fig. 1. Let us mention that
the algorithm has two basic parts:
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Input: a set T of FAIs over Y , a fuzzy set M ∈ LY of attributes,
and a flag PCLOSED ∈ {false, true}

Output: clT∗(M) if PCLOSED = true , or clT(M) if PCLOSED = false

Initialization:
1 if M = ∅ and PCLOSED = true :
2 return ∅
3 NEWDEP := M
4 for each A ⇒ B ∈ T :
5 if A = ∅:
6 NEWDEP := NEWDEP ∪ B
7 else:
8 COUNT [A ⇒ B] := |A|
9 CARD[A ⇒ B] := card(A)

10 for each 〈y, a〉 ∈ A:
11 add A ⇒ B to LIST [y]
12 DEGREE [y][A ⇒ B] := a
13 SKIP [y][A ⇒ B] := false
14 UPDATE := NEWDEP
15 CARDND := card(NEWDEP)
16 WAITLIST := ()

Computation:
17 while UPDATE �= ∅:
18 choose 〈y, a〉 ∈ UPDATE
19 UPDATE := UPDATE − {〈y, a〉}
20 for each A ⇒ B ∈ LIST [y] such that

SKIP [y][A ⇒ B] = false and DEGREE [y][A ⇒ B] ≤ a:
21 SKIP [y][A ⇒ B] = true
22 COUNT [A ⇒ B] := COUNT [A ⇒ B] − 1
23 if COUNT [A ⇒ B] = 0 and

(PCLOSED = false or CARD [A ⇒ B] < CARDND):
24 ADD := B 
 NEWDEP
25 CARDND := CARDND +

�
〈y,a〉∈ADD

�
fL(a) − fL(NEWDEP(y))

�

26 NEWDEP := NEWDEP ∪ ADD
27 UPDATE := UPDATE ∪ ADD
28 if PCLOSED = true and ADD �= ∅:
29 while WAITLIST �= ():
30 choose B ∈ WAITLIST
31 remove B from WAITLIST
32 ADD := B 
 NEWDEP
33 CARDND := CARDND +

�
〈y,a〉∈ADD

�
fL(a) − fL(NEWDEP(y))

�

34 NEWDEP := NEWDEP ∪ ADD
35 UPDATE := UPDATE ∪ ADD
36 if COUNT [A ⇒ B] = 0 and PCLOSED = true and

CARD [A ⇒ B] = CARDND:
37 add B to WAITLIST
38 return NEWDEP

Fig. 1. Graded LinClosure
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(i) initialization of data structures (lines 1–16), and

(ii) main computation (lines 17–38).

Denote by k the number of truth degrees, i.e. k = |L|. Denote by n the length of
the input which is the sum of attributes which belong to left-hand sides of FAIs
to non-zero degrees, i.e.: n =

∑
A⇒B∈T |A|. The initialization can be done with

time complexity O(n). Of course, the initialization depends on data structures
we choose for representing LIST , SKIP , DEGREE , COUNT , and CARD . In
next section we propose an efficient structure encompassing the information from
LIST , SKIP , DEGREE , COUNT , and CARD whose initialization takes O(kn)
steps. Since k (number of truth degrees) is a multiplicative constant (size of L
is fixed and does not depend on the length of the input), the initialization is
linearly dependent on the length of the input, i.e. it is indeed in O(n).

In the second part (computation), each graded attribute 〈y, a〉 is considered
at most once for update. This is ensured in a similar way as in the ordinary case,
see [22]. For each fuzzy attribute implication, the value of COUNT reaches zero
at most once. Then, the computation which follows (lines 24–27 or lines 32–35)
is linearly dependent on the size of the left-hand side of the processed fuzzy
attribute implication. This again depends on the representation of fuzzy sets
and operations with fuzzy sets. If we represent fuzzy sets by a list of pairs of the
form 〈y, a〉 where y ∈ Y and a ∈ L which is moreover sorted by the attributes
(in some fixed order), we can perform all necessary operations in linear time
proportional to the size of the fuzzy set. Thus, using analogous arguments as in
case of the original LinClosure [22], we get that GLinClosure works with
asymptotic time complexity O(n). Note that lines 28–37 are not present in the
ordinary LinClosure. This is because if we intend to compute fixed points of
clT ∗ , a graded attribute can be scheduled for updating (added to UPDATE ) only
if we know that the left-hand side of FAI is strictly contained in NEWDEP . This
is checked at line 36.

Remark 6. If L (our structure of truth degrees) is a two-element Boolean algebra,
i.e. if L = {0, 1}, GLinClosure with PCLOSED set to false produces the same
results as LinClosure [22] (the only difference is that our algorithm allows
also for FAIs of the form {} ⇒ B whereas the original LinClosure does not).
From this point of view, GLinClosure is a generalization of LinClosure.
GLinClosure is more versatile (even in crisp case): GLinClosure can be used
to compute pseudo-intents (and thus a non-redundant basis of data tables with
fuzzy attributes) which cannot be done with the original LinClosure (without
additional modifications).

4 Implementation Details, Examples, and Remarks

As mentioned before, the efficiency of an implementation of GLinClosure is
closely connected with data structures. The information contained in LIST ,
SKIP , DEGREE , COUNT , and CARD can be stored in a single efficient data
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0.1
0.2
0.4

〈2, 0.6, {0.4/a, 0.2/d}⇒{0.2/e}〉

〈2, 0.4, {0.2/d, 0.2/e}⇒{0.6/c, 0.5/d, 0.5/e}〉

〈3, 1.3, {0.5/c, 0.4/d, 0.4/e}⇒{0.8/a, b}〉

〈2, 1.1, {b, 0.1/e}⇒{0.8/c, d, 0.6/e}〉

〈2, 2, {b, c}⇒{d, e}〉

a :

b :

c :

d :

e :

Fig. 2. T -structure encompassing LIST , SKIP , DEGREE , COUNT , and CARD

structure. This structure, called a T -structure, is a particular attribute-indexed
vector of lists of pointers to structures carrying values from COUNT and CARD .
We illustrate the construction of a T -structure by an example. Consider a set T
of FAIs which consists of the following fuzzy attribute implications:

ϕ1: {}⇒{0.4/a, 0.1/d}, ϕ4: {0.5/c, 0.4/d, 0.4/e}⇒{0.8/a, b},

ϕ2: {0.4/a, 0.2/d}⇒{0.2/e}, ϕ5: {b, 0.1/e}⇒{0.8/c, d, 0.6/e},

ϕ3: {0.2/d, 0.2/e}⇒{0.6/c, 0.5/d, 0.5/e}, ϕ6: {b, c}⇒{d, e}.

Since ϕ1 is of the form {} ⇒ B, its right-hand side is added to NEWDEP
and the implication itself is not contained in LIST and other structures. The
other formulas, i.e. ϕ2, . . . , ϕ6, are used to build a new T -structure which is de-
picted in Fig. 2. The T -structure can be seen as consisting of two main parts.
First, a set of records encompassing information about the FAIs, COUNT ,
and CARD . For each FAI ϕi, we have a single record, called a T -record, of
the form 〈COUNT [ϕi],CARD [ϕi], ϕi〉, see Fig. 2 (right). Second, an attribute-
indexed vector of lists containing truth degrees and pointers to T -records, see
Fig. 2 (left). A list which is indexed by attribute y ∈ Y will be called a y-list. The
aim of this part of the structure is to keep information about the occurrence of
graded attributes that appear in left-hand sides of FAIs from T . In more detail,
a y-list contains truth degree a ∈ L iff there is at lest one A ⇒ B ∈ T such that
0 �= A(y) = a. Moreover, if a y-list contains a as its element, then it is connected
via pointer to all T -records 〈m, n, C ⇒ D〉 such that C(y) = a. Because of the
computational efficiency, each y-list is sorted by truth degrees in the ascendant
manner. Note that pointers between elements of lists Fig. 2 (left) and T -records
Fig. 2 (right) represent information in SKIP (SKIP [y][A ⇒ B] = false means
that pointer from element A(y) of y-list to T -record of A ⇒ B is present). As
one can see, a T -structure can be constructed by a sequential updating of the
structure with time complexity O(kn), where n is the size of the input (each
graded attribute is considered once) and k is the number of truth degrees (this
is an overhead needed to keep y-lists sorted). In the following examples, we
will use a convenient notation for writing T -structures which correspond in an
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0.4

0.1
0.2
0.4

〈0, 0.6, {0.4/a, 0.2/d}⇒{0.2/e}〉

〈1, 0.4, {0.2/d, 0.2/e}⇒{0.6/c, 0.5/d, 0.5/e}〉

〈3, 1.3, {0.5/c, 0.4/d, 0.4/e}⇒{0.8/a, b}〉

〈2, 1.1, {b, 0.1/e}⇒{0.8/c, d, 0.6/e}〉

〈2, 2, {b, c}⇒{d, e}〉

a :

b :

c :

d :

e :

Fig. 3. T -structure before processing the first FAI

obvious way with graphs of the from of Fig. 2. For example, instead of Fig. 2, we
write:

a : [(0.4, 〈2, 0.6, ϕ2〉)]
b : [(1, 〈2, 2, ϕ6〉, 〈2, 1.1, ϕ5〉)]
c : [(0.5, 〈3, 1.3, ϕ4〉), (1, 〈2, 2, ϕ6〉)]
d : [(0.2, 〈2, 0.4, ϕ3〉, 〈2, 0.6, ϕ2〉), (0.4, 〈3, 1.3, ϕ4〉)]
e : [(0.1, 〈2, 1.1, ϕ5〉), (0.2, 〈2, 0.4, ϕ3〉), (0.4, 〈3, 1.3, ϕ4〉)]

Example 1. Consider T which consists of ϕ1, . . . , ϕ6 as above in this section. Let
M = {0.2/d}, and PCLOSED = false. After the initialization (line 16 of the al-
gorithm), we have NEWDEP = {0.4/a, 0.2/d} and UPDATE = (〈a, 0.4〉, 〈d, 0.2〉).
Recall that during the update, values of COUNT and SKIP are changed. Namely,
values of COUNT may be decremented and values of SKIP are changed to true.
The latter update is represented by removing pointers from the T -structure. Af-
ter the update of 〈a, 0.4〉 and 〈d, 0.2〉, the T -record 〈0, 0.6, ϕ2 = {0.4/a, 0.2/d} ⇒
{0.2/e}〉 of ϕ2 is processed because we have COUNT [ϕ2] = 0 (see the first item
of the T -record). At this point, the algorithm is in the following state:

b : [(1, 〈2, 2, ϕ6〉, 〈2, 1.1, ϕ5〉)] ADD = (〈e, 0.2〉)
c : [(0.5, 〈3, 1.3, ϕ4〉), (1, 〈2, 2, ϕ6〉)] NEWDEP = {0.4/a, 0.2/d, 0.2/e}
d : [(0.4, 〈3, 1.3, ϕ4〉)] UPDATE = (〈e, 0.2〉)
e : [(0.1, 〈2, 1.1, ϕ5〉), (0.2, 〈1, 0.4, ϕ3〉), (0.4, 〈3, 1.3, ϕ4〉)]

The corresponding T -structure is depicted in Fig. 3.
As a further step of the computation, an update of 〈e, 0.2〉 is performed and then
the T -record 〈0, 0.4, ϕ3 = {0.2/d, 0.2/e}⇒{0.6/c, 0.5/d, 0.5/e}〉 of ϕ3 is processed:

b : [(1, 〈2, 2, ϕ6〉, 〈1, 1.1, ϕ5〉)] ADD = (〈c, 0.6〉, 〈d, 0.5〉, 〈e, 0.5〉)
c : [(0.5, 〈3, 1.3, ϕ4〉), (1, 〈2, 2, ϕ6〉)] NEWDEP = {0.4/a, 0.6/c, 0.5/d, 0.5/e}
d : [(0.4, 〈3, 1.3, ϕ4〉)] UPDATE = (〈c, 0.6〉, 〈d, 0.5〉, 〈e, 0.5〉)
e : [(0.4, 〈3, 1.3, ϕ4〉)]

Right after the update of 〈c, 0.6〉, 〈d, 0.5〉, and 〈e, 0.5〉, the algorithm will process
the T -record of ϕ4. After that, we have the following situation:
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b : [(1, 〈2, 2, ϕ6〉, 〈1, 1.1, ϕ5〉)] ADD = (〈a, 0.8〉, 〈b, 1〉)
c : [(1, 〈2, 2, ϕ6〉)] NEWDEP = {0.8/a, b, 0.6/c, 0.5/d, 0.5/e}

UPDATE = (〈a, 0.8〉, 〈b, 1〉)
Then, 〈a, 0.8〉 is updated. Notice that this update has no effect because the T -
structure no longer contains attributes of the form 〈a, x〉 waiting for update (the
a-list is empty). After the update of 〈b, 1〉, the T -record 〈0, 1.1, ϕ5 = {b, 0.1/e}⇒
{0.8/c, d, 0.6/e}〉 of ϕ5 is processed. We arrive to:

c : [(1, 〈1, 2, ϕ6〉)] ADD = (〈c, 0.8〉, 〈d, 1〉, 〈e, 0.6〉)
NEWDEP = {0.8/a, b, 0.8/c, d, 0.6/e}
UPDATE = (〈c, 0.8〉, 〈d, 1〉, 〈e, 0.6〉)

The algorithm updates 〈c, 0.8〉, 〈d, 1〉, 〈e, 0.6〉 however such updates are all with-
out any effect because the d-list and e-list are already empty, and the c-list
contains a single record with 1 � 0.8 (see the condition at line 20 of the algo-
rithm). Thus, the T -structure remains unchanged, UPDATE is empty, and the
procedure stops returning the value of NEWDEP which is {0.8/a, b, 0.8/c, d, 0.6/e}.

Example 2. In this example we demonstrate the role of the WAITLIST . Let T
be a set of FAIs which consists of

ψ1: {0.2/a}⇒{0.6/a, 0.3/c}, ψ3: {0.6/a, 0.3/c}⇒{b},

ψ2: {0.3/c}⇒{0.2/b}, ψ4: {0.6/a, b, 0.3/c}⇒{d}.

Moreover, we consider M = {0.3/a} and PCLOSED = true. After the initializa-
tion (line 16), we have NEWDEP = {0.3/a}, CARDND = 0.3 (fL is identity),
UPDATE = (〈a, 0.3〉), WAITLIST = (), and the T -structure is the following:

a : [(0.2, 〈1, 0.2, ψ1〉), (0.6, 〈3, 1.9, ψ4〉, 〈2, 0.9, ψ3〉)]
b : [(1, 〈3, 1.9, ψ4〉)]
c : [(0.3, 〈3, 1.9, ψ4〉, 〈2, 0.9, ψ3〉, 〈1, 0.3, ψ2〉)]

The computation continues with the update of 〈a, 0.3〉. During that, the T -
record 〈1, 0.2, ψ1〉 will be updated to 〈0, 0.2, ψ1〉. Since CARD [ψ1] = 0.2 < 0.3 =
CARDND, the left-hand side of ψ1 is strictly contained in NEWDEP , and the
algorithm processes 〈0, 0.2, ψ1 = {0.2/a}⇒{0.6/a, 0.3/c}〉, i.e. we get to
a : [(0.6, 〈3, 1.9, ψ4〉, 〈2, 0.9, ψ3〉)] ADD = (〈a, 0.6〉, 〈c, 0.3〉)
b : [(1, 〈3, 1.9, ψ4〉)] NEWDEP = {0.6/a, 0.3/c}
c : [(0.3, 〈3, 1.9, ψ4〉, 〈2, 0.9, ψ3〉, 〈1, 0.3, ψ2〉)] CARDND = 0.9

UPDATE = (〈a, 0.6〉, 〈c, 0.3〉)

After the update of 〈a, 0.6〉, we have:

b : [(1, 〈2, 1.9, ψ4〉)]
c : [(0.3, 〈2, 1.9, ψ4〉, 〈1, 0.9, ψ3〉, 〈1, 0.3, ψ2〉)]
Then, the algorithm continues with updating 〈c, 0.3〉. The T -record 〈2, 1.9, ψ4〉
is updated to 〈1, 1.9, ψ4〉 and removed from the c-list. In the next step, the T -
record 〈1, 0.9, ψ3〉 is updated to 〈0, 0.9, ψ3〉. At this point, we have CARD [ψ3] =
0.9 = CARDND, i.e. we add fuzzy set {b} of attributes (the right-hand side of
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ψ3) to the WAITLIST . Finally, 〈1, 0.3, ψ2〉 is updated to 〈0, 0.3, ψ2〉 which yields
the following situation: the T -structure consists of b : [(1, 〈1, 1.9, ψ4〉)], ADD =
(〈b, 0.2〉), NEWDEP = {0.6/a, 0.2/b, 0.3/c}, CARDND = 1.1, and UPDATE =
(〈b, 0.2〉). Since ADD is nonempty, the algorithm continues with flushing the
WAITLIST (lines 28–35). After that, the new values are set to NEWDEP =
{0.6/a, b, 0.3/c}, CARDND = 1.9, and UPDATE = (〈b, 0.2〉, 〈b, 1〉). The process
continues with updating 〈b, 0.2〉 (no effect) and 〈b, 1〉. Here again, we are in
a situation where CARD [ψ4] = 1.9 = CARDND, i.e. {d} is added to the
WAITLIST , only this time, the computation ends because UPDATE is empty,
i.e. {d} will not be added to NEWDEP . Thus, the resulting value being returned
is {0.6/a, b, 0.3/c}.

5 Conclusions

We have shown an extended version of the LinClosure algorithm, so-called
Graded LinClosure (GLinClosure). Our algorithm can be used in case of
graded as well as binary attributes. Even for binary attributes, GLinClosure

is more versatile than the original LinClosure (it can be used to compute
systems of pseudo-intents) but it has the same asymptotic complexity O(n).
Future research will focus on further algorithms for formal concept analysis of
data with fuzzy attributes.
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Wolff, K.E. (eds.) (Hrsg.): Beiträge zur Begriffsanalyse, pp. 241–254. B. I. Wis-
senschaftsverlag, Mannheim (1987)

16. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations.
Springer, Berlin (1999)

17. Goguen, J.: The logic of inexact concepts. Synthese 18(9), 325–373 (1968)
18. Guigues, J.-L., Duquenne, V.: Familles minimales d’implications informatives re-

sultant d’un tableau de données binaires. Math. Sci. Humaines 95, 5–18 (1986)
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Abstract. When tackling real-life datasets, it is common to face the
existence of scrambled missing values within data. Considered as ”dirty
data”, it is usually removed during the pre-processing step of the KDD
process. Starting from the fact that ”making up this missing data is bet-
ter than throwing it away”, we present a new approach trying to complete
the missing data. The main singularity of the introduced approach is that
it sheds light on a fruitful synergy between generic basis of association
rules and the topic of missing values handling. In fact, beyond interest-
ing compactness rate, such generic association rules make it possible to
get a considerable reduction of conflicts during the completion step. A
new metric called ”Robustness” is also introduced, and aims to select the
robust association rule for the completion of a missing value whenever
a conflict appears. Carried out experiments on benchmark datasets con-
firm the soundness of our approach. Thus, it reduces conflict during the
completion step while offering a high percentage of correct completion
accuracy.

Keywords: Data mining, Formal Concept Analysis, Generic Association
Rule Bases, Missing Values Completion.

1 Introduction

The field of Knowledge Discovery in Databases (KDD) has recently emerged
as a new research discipline, standing at the crossroads of statistics, machine
learning, data management, and other areas. The central step within the overall
KDD process is data mining — the application of computational techniques for
the sake of finding patterns and models in data. Implicitly, such knowledge is
supposed to be mined from ”high” quality data. However, most real-life datasets
encompass missing data, that is commonly considered as withdrawable during
the KDD pre-processing step.

Thus, setting up robust mining algorithms handling ”dirty” data is a com-
pelling and thriving issue to be addressed towards knowledge quality improve-
ment. In this respect, a review of the dedicated literature pointed out a
determined effort from the Statistics community. This is reflected by the wealthy
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harvest of works addressing the completing missing value issue, e.g., Gibbs sam-
pling [7,14], the Expectation Maximization [9] and Bound and Collapse [18] — to
cite but a few. Based on the missing information principle [12], i.e., the value for
replacement is one of the existing data, the use of association rules seemed to be
a promising issue c.f, the approaches presented in [4,10,17,22]. The driving idea
is that association rules ideally describe conditional expectation of the missing
values according to the observed data caught out by their premise parts. Within
based association rule approaches, we shall mention those that present a robust
itemset support counting procedure, i.e., without throwing out missing data.
They are based on pioneering works of [11,16] and those that proceed by ac-
quiring knowledge under incompleteness [19,20]. The main difference between
approaches presenting a completion process stands in the way of tackling the
conflict problem, i.e., when many values are candidates for the completion of a
missing data. In addition, the inherent oversized lists of association rules that
can be drawn is a key factor in hampering the efficiency of heuristics used to
address the conflict problem.

In this paper, we propose a new approach, called GBARMV C , aiming to com-
plete missing values based on generic basis of association rules. In fact, beyond
interesting compactness rate, the use of such generic association rules proved to
be fruitful towards efficiently tackling the conflict problem. In addition, a new
metric called ”Robustness” is introduced and aims to select the robust rule for
the completion of a missing value whenever a conflict appears. Conducted ex-
periments on benchmark datasets show a high percentage of correct completion
accuracy.

The remainder of the paper is organized as follows. Section 2 sketches a thor-
ough study of the related work to the completion of missing values using associ-
ation rules. In Section 3, we introduce the GBARMV C approach for completing
missing values based on generic basis of association rules. Experimental results
showing the soundness of our approach are presented in section 4. Finally, we
conclude and outline avenues of future work.

2 Basic Definitions and Related Work

In this section, we present the general framework for the derivation of association
rules and the related work dealing with the completion of missing values using
the association rule technique.

2.1 Association Rules

Complete - Incomplete context: A table D is a non-empty finite set of tuples
(or transactions), where each tuple T is characterized by a non-empty finite set
of attributes, denoted by I. Each attribute Xi is associated with a domain,
denoted dom(Xi), which defines the set of possible values for Xi. It may happen
that some attribute values for a tuple are missing. A context with missing values
is called incomplete context, otherwise, it is said to be complete. In the sequel,
we denote a missing value by ”?”.
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Extraction context: An extraction context is a triplet K = (O, I, R), where
O represents a finite set of transactions, I is a finite set of items and R is a
binary (incidence) relation (i.e., R ⊆ O × I). Each couple (o, i) ∈ R expresses
that the transaction o ∈ O contains the item i ∈ I.

Example 1. Let us consider the complete context depicted by Figure 1 (Left).
This context is defined by 4 attributes X1, X2, X3 and X4, such that dom(X1) =
{A, B}, dom(X2) = {C, D}, dom(X3) = {E, F, G} and dom(X4) = {H, I}. The
associated extraction context is depicted in Figure 1 (Center), where each couple
(attribute, value) is mapped to an item. Figure 1 (Right) represents the extrac-
tion context in which missing values were randomly introduced. It is important
to mention that each missing value indicates the presence of one item among the
missing ones.

The formalization of the association rule extraction problem was introduced by
Agrawal et al. [1]. Association rule derivation is achieved from a set FIK of
frequent itemsets [2].

Frequent itemset: The support of an itemset I is the percentage of transac-
tions containing I. The support of I, denoted supp(I), is defined as supp(I) =
|{o ∈ O|I ⊆ o}|. I is said to be frequent if supp(I) is greater than or equal to a
user-specified minimum support, denoted minsup.

Association rule: An association rule R is a relation between itemsets of the
form R : X ⇒ (Y -X), in which X and Y are frequent itemsets, and X ⊂ Y . Item-
sets X and (Y -X) are called, respectively, premise and conclusion of the rule R.
Valid association rules are those whose confidence measure, Conf(R)= supp(Y )

supp(X) ,
is greater than or equal to a minimal threshold of confidence denoted minconf. If
Conf(R)=1, then R is called exact association rule, otherwise it is called approx-
imative association rule [13]. Even though support and confidence metrics are
commonly used to assess association rule validity, the Lift metric [6] is becoming
of common use. In fact, this statistical metric, presenting a finer assessment of
the correlation between the premise and the conclusion parts, is defined as fol-
lows: Lift(R)= supp(Y )

supp(X)×supp(Y −X) . Nevertheless, in practice, the number of valid
association rules is very high. To palliate this problem, several solutions towards
a lossless reduction were proposed. They mainly consist in extracting an infor-
mative reduced subset of association rules, commonly called generic basis.

2.2 Related Work

The intuition behind the association rules based approaches for completing miss-
ing values, is that association rules describe a dependency among data including
missing ones. Hence, it should be possible to guess these values by exploiting
discovered rules [22]. Interestingly enough, all these approaches can be split into
two pools. With respect to Table 1, the first pool approaches begin by discarding
missing data. Then, they try to complete missing ones where association rules
discovered from only complete data, are of use. However, such approaches may
lead to biased results, since such rules were discovered from a misleading data,
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X1 X2 X3 X4

1 A C E H

2 B C E I

3 A C E H

4 A D F I

5 B C F I

6 B C F H

7 A D G I

8 B D G I

A B C D E F G H I

1 × × × ×
2 × × × ×
3 × × × ×
4 × × × ×
5 × × × ×
6 × × × ×
7 × × × ×
8 × × × ×

A B C D E F G H I

1 × × × ×
2 × × × ×
3 × × ? ? ? ×
4 × × × ? ?

5 × × × ×
6 ? ? × × ×
7 × × × ×
8 × ? ? × ×

Fig. 1. Left: Extraction complete context K. Center: The associated complete trans-
actional mapping. Right: Extraction incomplete context.

which considerably affects the efficiency of the completion process [20]. Start-
ing from the fact that ”making up missing data is better than throwing out it
away”, approaches of a second pool were proposed. Such approaches focus on
mining knowledge under incompleteness. Unfortunately, these approaches suffer
from the handling prohibitive number of rules generated from frequent itemsets.
As a result, conflict between rules will be difficult to manage and leads to an
inefficient completion process. To palliate such a drawback, we propose a new
approach based on the use of generic basis of association rules, that aims to com-
plete missing values and reduce conflict during the completion step. In addition,
our proposed approach falls within the second pool since it does not discard
missing data.

Table 1. Characteristics of the surveyed approaches dealing with missing values com-
pletion

Pool 1 Pool 2

Approach 1 Approach 2 Approach 3 Approach 4
[4] [10] [15] [22]

Knowledge Discovery No No Yes Yes
under

incompleteness

Conflict - reducing conclusion Score-VM [15] Score [22]
resolution part’s rule J-Measure [21]

Generation of relevant frequent frequent frequent
rules maximal itemsets itemsets itemsets

based on rectangles

3 The GBARMV C Approach

The limitations of the above surveyed approaches motivate us to propose a new
approach mainly based on the use of generic basis of association rules. The
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main motivation is that such generic rules consist of a reduced subset of associ-
ation rules, i.e., fulfills the compactness property. Thus, our proposed approach
presents theses main features:

1. It does not discard missing data
2. It takes into account the presence of missing values
3. It is based on the use of a generic basis of association rules

In the following, we begin by motivating the benefits of using such rules for the
missing values completion.

3.1 Motivations

Let us consider an incomplete transaction depicted by Figure 2 (Left). We sup-
pose that the missing value can be either the item ”A” or the item ”B”. We try
to compare the use of the set of association rules, denoted AR, versus the use
of the associated generic basis of association rules, denoted GB. The set of AR
is given by Figure 2 (Center), while the GB set is given by Figure 2 (Right). By
putting the focus on rules concluding on items ”A” and ”B”, we remark that
all rules belonging to AR can be used to complete the missing value. However,
it should be noticed that R2, R3 and R4 are not interesting for the comple-
tion in comparison with R1. In fact, R1 can easily be interpreted as follows: ”it
is sufficient to have the item ”D” in the transaction to use R1 for completing
the missing value”. However, R2, R3 and R4 present much more satisfiable con-
straints (materialized by more items in the premise parts) to be used for the
completion. Moreover, when R1 can not be used for the completion, it becomes
unnecessary to check whether R2, R3 and R4 could be used since they present
the same constraint imposed by R1. The same statement can be observed for the
rule R7, which is not interesting in comparison with both R5 and R6. However,
if we consider the set of GB, one can see that all rules qualified as not interesting
do not appear in GB. This fact is the fundamental characteristic of the generic
basis of association rules. Such rules are composed in their premise part by a
minimal generator, which represents less constraints to satisfy when completing
a missing value. Hence, a generic basis of association rules presents the following
advantages:

– It encompasses a minimal set of rules. These rules are the most interesting
for the missing value completion, i.e., non interesting (redundant) rules are
discarded, since they do not materialize relevant knowledge.

– It presents less constraints to satisfy when completing a missing value.
– It shows a considerable reduction of conflicts between rules.

As pointed out in [3], defining generic association rules relies on the Closure
operator and the key notion of minimal generator [13]. Thus, before introducing
the completion approach, we shall show how these key notions are redefined in
the case of an incomplete context.
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? C D E F G

R1 D ⇒ A R5 E G ⇒ B

R2 D F ⇒ A R6 C G ⇒ B

R3 D G ⇒ A R7 C E G ⇒ B

R4 D F G ⇒ A

R1 D ⇒ A

R5 E G ⇒ B

R6 C G ⇒ B

Fig. 2. Left: An incomplete transaction. Center: Association rules (AR). Right:
Generic basis of association rules (GB).

3.2 Basic Definitions

Certain Transaction: A transaction T is said to be Certain, with respect to an
itemset X , denoted X −Certain, if T contains X . The set of Certain transactions
is defined as follows :

X − Certain = {T ∈ D | ∀ i ∈ X i is present in T }.

Probable transaction: A transaction T is said to be Probable, with respect to
an item i, denoted i − Probable, if i is missing in T .
Shadowed transaction: A transaction T is said to be Shadowed with respect
to an itemset (X ∪ i) if T contains X , such that T is i − Probable. The set of
Shadowed transactions relatively to an itemset (X∪i), denoted (X, i)−shadowed
is as follows: (X, i) − Shadowed = {T ∈ D | T ∈ X − Certain ∩ i − Probable}.

Example 2. Let us consider the incomplete context depicted by Figure 1 (Right).
Transaction T3 is considered as AC − Certain, since it contains AC and it is
E−Probable, since E is missing. Transaction T3 is then considered as (AC, E)−
Shadowed.

In what follows, we recall the definition of the Almost-Closure operator [5].

Definition 1. (Almost-Closure) The Almost-Closure operator of an itemset
X, denoted AC(X), is defined as AC(X) = X∪{i | i ∈ I ∧ supp(X)−supp(Xi) ≤
δ} where δ is a positive integer representing the number of exceptions.

This Definition points out that when an item i ∈ AC(X), then it is to say that
this item is present in all transactions containing X with a bounded number of
exceptions less than δ.

Example 3. Let us consider the complete context depicted by Figure 1 (Center).
With respect to Definition 1, we have AC(AC) = ACEH with δ = 0, i.e., E
and H exist in all transactions containing AC.

It is noteworthy that the Almost-Closure operator overlaps with that of Closure
operator in a complete context for δ = 0 [5]. The Almost-Closure was redefined to
compute the δ-free sets1 from an incomplete context [20]. We use this definition
to introduce a minimal generator in an incomplete context. Then, we prove
that with δ = 0, the Almost-Closure does no longer correspond to the Closure
operator like in a complete context. For this reason, in the remainder, we shall
employ the Pseudo-Closure term to point out this distinction.
1 A 0-free-set is also called minimal generator [5].
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Definition 2. (Pseudo-Closure) The Pseudo-Closure of an itemset X in an
incomplete context, denoted PC(X), is defined as follows:

PC(X) = X ∪ {i | i ∈ I ∧ supp(X) − supp(Xi) = |(X, i) − Shadowed| }.

The idea of the Pseudo-Closure operator is to adopt an optimistic strategy.
This involves a consideration of transactions containing X in which i is missing
((X, i)− Shadowed). These transactions are considered as transactions contain-
ing the item i.

Example 4. Let us consider the incomplete context depicted by Figure 1 (Right).
We have supp(AC) − supp(ACH) = 0 which is equal to |(AC, H) − Shadowed|.
Moreover, we have supp(AC)− supp(ACE) = 1 which represents the number of
the transactions (AC, E) − Shadowed. Hence, PC(AC) = ACEH .

Definition 3. (Minimal generator in an incomplete context) An itemset
g is said to be minimal generator in an incomplete context if it is not included
in the Pseudo-Closure of any of its subsets of size |g| − 1.

Proposition 1. The Pseudo-closure is no more a Closure operator.

Proof. By fulfilling the extensivity property, the Closure operator induces that
each minimal generator and its associated Pseudo-closed itemset have the same
support value. However, the Pseudo-closure adopts an optimistic strategy as pre-
sented in [20]. When computing the Pseudo-closure of an itemset X , if an item
is missing, then it is considered as present. Thus, the minimal generator and its
Pseudo-closed itemset do not necessarily have the same support value. Conse-
quently, the Pseudo-closure in an incomplete context is not a Closure operator.�
However, it is important to mention that the Closure operator induces generic
basis of exact association rules. For this reason, we use then a generic basis of
pseudo-exact association rules since the Pseudo-closure operator is of use. In
what follows, we adapt the definition of the generic basis of exact association
rules introduced in [3] to an incomplete context. Such rules allow the selection
of a generic subset of all association rules. Thus, the minimal set of rules is used
for completing missing values, since it reduces conflict between rules during the
completion step.

Definition 4. (Generic basis of pseudo-exact association rules) Let FPC
be the set of frequent Pseudo-closed itemsets extracted from an incomplete context.
For each frequent Pseudo-closed itemset c ∈ FPC, let MGc be the set of its mini-
mal generators. The generic basis of pseudo-exact association rules GB is defined
as:

GB = {R : g ⇒ (c - g) | c ∈ FPC and g ∈ MGc and g �= c(2)}.

For the completion of the missing values, we use generic rules of the form
premise ⇒ (Xn, vn), where premise is a conjunction of elements of the form
(Xj , vj), n �= j where (Xj , vj) is considered as an item.
2 The condition g �= c ensures discarding rules of the form g ⇒ ∅.
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3.3 The Missing Values Completion GBARMV C

In the remainder, we present a missing value completion approach called
GBARMV C

3. This approach is based on the one hand, extracting the generic
basis of pseudo-exact association rules from an incomplete context. On the other
hand, we provide a new metric called Robustness that aims to select the robust
rule for the completion of a missing value whenever a conflict appears. This new
metric evaluates the degree of correlation between the premise and the conclu-
sion of a rule materialized through the Lift measure [6] and it introduces the
degree of assessment of the incomplete transaction. This assessment is material-
ized through the Matching measure. Below, we recall the notion of consistently
interpreting a transaction by a rule [22] and we provide the definitions of the
Matching and Robustness metrics.

Consistently interpreting [22]: A rule R : premise ⇒ (Xn, vn) is said to
be consistently interpreting a transaction T presenting a missing value in the
attribute Xn, if there is no element (Xj , vj) in the premise of R that differs from
the existing value of Xj in T .

Definition 5. The Matching measure of a rule R : premise ⇒ (Xn, vn) with
an incomplete transaction T is defined as follows :

Matching(R, t) =

{
0 if R is not consistently interpreting T
�

matched(Xj ,vj)
number of attributes otherwise.

where

matched(Xj, vj)=
{

0 if Xj presents a missing value in T
1 otherwise.

Example 5. Let us consider transaction T6: (X1, ?)(X2, C)(X3, F )(X4, H). Rule
R1 : (X2, D)(X3, F ) ⇒ (X1, A) does not consistently interpret T6, since the
value of the attribute X2 for T6 is C, which is different from the value D related
to attribute X2 in the rule R1. Thus, Matching(R1, T6) = 0. However, if we
consider the example of R2 : (X2, C)(X3, F ) ⇒ (X1, B), we can affirm that
Matching(R2, T6) = 1

2 since (X2, C) and (X3, F ) are present in T6.

The main idea of our proposed approach is to select a rule that maximizes both
the Lift and the Matching values. The Lift measure of a rule A ⇒ B is interesting
for the completion issue since it describes the strength of the correlation between
A and B, i.e., the presence of the item A indicates an increase of the item B.
The purpose of the Matching measure is to select the rule that corresponds
best to the incomplete transaction. For example, if the hair color of a person
is missing and we are faced by a conflict between these two rules: Bleu eyes ⇒
Blond hair and redheaded person ∧ clear skin ⇒ Red hair. Then, we tend to
use the second rule since it presents a maximum matching. This is performed
through the Robustness metric defined as follows:
3 The acronym GBARMV C stands for Generic Basis of Association Rules based ap-

proach for Missing Values Completion.
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Definition 6. The Robustness of an associative rule R for completing a missing
transaction T is defined as follows:

Robustness(R, T ) = Matching(R, T ) × Lift(R).

In the remainder, we present the GBARMV C algorithm, whose pseudo-code is
given by Algorithm 1. The main steps of GBARMV C algorithm are sketched by
the following sequence :

– For each missing attribute Xn of an incomplete transaction T , select rules
concluding on Xn and consistently interpreting T . We denote such rule set
by Rprobables(T, Xn) (lines 3-7).

– If the set Rprobables(T, Xn) is empty, then there are no rules permitting the
completion of Xn (lines 8-9).

– If all rules in Rprobables(T, Xn) conclude on the same value v, then v is used
to complete the missing attribute value (lines 11-12).

– Otherwise, i.e., Rprobables(T, Xn) lead to a conflict. Hence, we compute the
Robustness value for all rules belonging to Rprobables(T, Xn) (lines 14-18).

– The rule presenting the highest Robustness value is used to complete the
missing value on Xn (line 19).

4 Experimental Results

It was worth the effort to experience in practice the potential benefits of the
proposed approach. Thus, we have implemented both GBARMV C and ARMV C

[22] approaches in the C++ language using gcc version 3.3.1. Experiments were
conducted on a Pentium IV PC with a 2.4 GHz and 512 MB of main memory,
running Red Hat Linux. The set of minimal generators and their associated
Pseudo-closed itemsets were extracted thanks to MVminer kindly provided by
F. Rioult. For these experiments, we consider a complete database to act as a
reference database, and we randomly introduce missing values per attribute with
the following different rates : 5%, 10%, 15% and 20%. Benchmark datasets used
for these experiments are from the UCI Machine Learning Repository4. Char-
acteristics of these datasets are depicted by Table 2. During these experiments,
we compared statistics yielded by GBARMV C vs those of ARMV C , by stressing
on the following metrics :

– The percentage of missing values that an approach permits to complete.
– The accuracy : the percentage of correctly completed missing values.

Table 3 sketches the variation of the completion percentage and the Accuracy
metric vs the percentage of the missing values variation of GBARMV C . From the
reported statistics, we remark that the variation of incrusted missing values does
not really affect the percentage of the completion. However, the higher the per-
centage of the missing values is, the lower the obtained accuracy. This decrease in

4 http://www.ics.uci.edu/∼mlearn/MLRepository.html
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Algorithm : GBARMV C1

Data: - KMV : Incomplete context
- GB : Generic basis of pseudo-exact association rules

Results: KMV completed
Begin2

Foreach incomplete transaction T in KMV do3

Foreach attribute Xn in T with a missing value do4

Foreach rule R in GB such that Xn appears in the conclusion5

do6

If R consistently interpreting T then7

Rprobables(T, Xn) = Rprobables(T, Xn) ∪ R;8

If |Rprobables(T, Xn)| = 0 then9

Vcompletion = ∅;10

Else11

If Rprobables(T, Xn) concludes on the same value v then12

Vcompletion = v;13

Else14

max=0;15

Foreach rule r in Rprobables(T, Xn) do16

r.Robustness=r.Matching× r.Lift;17

If r.Robustness>max then18

Vcompletion=r.conclusion;19

T.Xn = Vcompletion;20

return (KMV completed);21

End22

Algorithm 1. GBARMV C algorithm

of the percentage of the correctly completed missing values seems to be legitimate
and quite expectable. This result can be explained by the following: the higher
the incrusted number of missing values is, the worse the extracted rule quality.
This fact considerably affects the Accuracy metric. Table 4 sketches the variation
of the completion percentage and the Accuracy metric vs the variation of the
minsup value. From Table 4, we can remak, as far as the minsup value increases,
the percentage of the completion diminishes. On the contrary, in most cases by
increasing the minsup value the accuracy value increases. In fact, rules with a
higher minsup permit an accurate completion since they describe a more frequent
expectation of the missing values according to the observed data. Table 5 sketches
the statistics for the completion percentage and those of the Accuracy values
obtained by GBARMV C vs those pointed out by ARMV C for a minsup value
equal to 10%. For both approaches, as far as we lower the percentage of missing
values, the number of rules considered during the completion step increases.
However, those used by GBARMV C is by far less than the rules used by ARMV C .
A careful scrutinize of these statistics permits to shed light on the following:
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Table 2. Dataset characteristics

Dataset Number of Number of Number of

transactions items attributes

Mushroom 8124 128 23

Zoo 101 56 28

Tic-tac-toe 958 58 29

House-votes 435 36 18

Monks2 432 38 19

Table 3. Variation of the percentage of completion and the Accuracy metric of
GBARMV C vs the percentage of missing values variation for minsup value equal to
10%

Dataset # # Percentage Accuracy
missing values(%) of rules of completion (%) (%)

5 28293 74 99
Mushroom 10 27988 76 99

15 27988 78 97
20 24410 80 97

5 824650 100 97
Zoo 10 756741 98 89

15 626390 100 88
20 547075 99 88

5 315094 100 91
Tic-tac-toe 10 296222 100 89

15 279915 100 87
20 266022 100 60

5 125909 91 95
House-votes 10 102310 93 90

15 94246 92 87
20 81162 92 82

5 28325 100 83
Monks2 10 25402 100 65

15 21790 100 71
20 19741 100 63

– Mushroom - House-Votes: For these datasets, the percentage of comple-
tion of ARMV C is better than GBARMV C . This result is not explained by
the reduced number of rules presented by GBARMV C . This is can be justi-
fied by the Score metric used by ARMV C . This metric allows the use of rules
on which all items in the premise part are missing. Such rules are not used
by GBARMV C . We considered them as non reliable for the completion.

– Zoo - Tic-tac-toe - Monks2: In the contrary of the previous datasets,
we remark that GBARMV C has permitted a high percentage of completion
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Table 4. Variation of the percentage of completion and the Accuracy metric of
GBARMV C vs the variation of the minsup value for a number of missing values equal
to 20%

Dataset minsup Percentage Accuracy
(%) of completion (%) (%)

10 80 97
15 75 98

Mushroom 20 71 98
25 55 73
30 53 57

10 99 88
15 96 78

Zoo 20 92 88
25 89 92
30 88 93

10 100 60
15 100 70

Tic-tac-toe 20 89 85
25 86 96
30 65 100

10 92 82
15 45 90

House-votes 20 76 79
25 70 74
30 33 50

10 100 63
15 100 63

Monks2 20 100 75
25 100 83
30 83 92

as well as ARMV C . This statement is observed even with the reduced
number of rules of GBARMV C in comparison with rules of ARMV C . This
fact represents the advantage of GBARMV C , i.e., rules of GBARMV C are
not redundant.

– For all datasets, GBARMV C has permitted a better Accuracy. This better
Accuracy result can be justified as follows:
1. Rules produced by GBARMV C are more reliable in presence of missing

values. This is materialized thorough the Pseudo-Closure definition.
2. It was shown in [22] that the Accuracy depends on the number of the

extracted rules. However, ARMV C generates a large number of rules,
which affects considerably the completion Accuracy.

Finally, according to these experimental results, it should be mentioned that
GBARMV C presents a more accurate completion process. Moreover, this com-
pletion process is less affected by the rate of the introduced missing values than



Yet Another Approach for Completing Missing Values 167

Table 5. Evaluation of the percentage of completion and the Accuracy metric of
ARMV C vs. GBARMV C for a minsup value equal to 10%

Mushroom
Number of 5 10 15 20
missing values (%)

Percentage of completion (%) 50 92 99 80
ARMV C Accuracy (%) 42 58 64 66

Number of rules 79461 77161 76830 68168

Percentage of completion (%) 74 76 78 80
GBARMV C Accuracy (%) 99 99 97 97

Number of rules 28893 27988 27988 24410

Zoo
Number of 5 10 15 20
missing values(%)

Percentage of completion(%) 100 100 100 100
ARMV C Accuracy (%) 55 57 55 66

Number of rules 3898169 3842627 3761081 3293571

Percentage of completion (%) 100 098 100 099
GBARMV C Accuracy (%) 97 89 88 88

Number of rules 824650 756741 626390 547075

Tic-tac-toe
Number of 5 10 15 20
missing values(%)

Percentage of completion (%) 100 100 100 100
ARMV C Accuracy (%) 86 73 76 71

Number of rules 632826 592115 554530 528343

Percentage of completion (%) 100 100 100 100
GBARMV C Accuracy (%) 91 89 87 60

Number of rules 315094 296222 279915 266022

House-votes
Number of 5 10 15 20
missing values (%)

Percentage of completion (%) 95 96 97 98
ARMV C Accuracy (%) 87 77 73 71

Number of rules 387342 369180 335639 309617

Percentage of completion (%) 91 93 92 92
GBARMV C Accuracy (%) 95 90 87 82

Number of rules 125909 102310 94246 81162

Monks
Number of 5 10 15 20
missing values (%)

Percentage of completion (%) 100 100 100 100
ARMV C Accuracy (%) 76 67 65 60

Number of rules 52660 45249 33815 34490

Percentage of completion (%) 100 100 100 100
GBARMV C Accuracy (%) 83 65 71 63

Number of rules 28325 25402 21790 19741
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ARMV C . This efficiency can be explained by the strategy adopted during the
completion step. In fact, based on generic bases of association rules, it permitted
a considerable reduction of conflicts, leading to high rate of correct completion
accuracy.

5 Conclusion and Future Work

In this paper, we proposed a new approach called GBARMV C , permitting the
completion of the missing values. The main particularity of our proposed ap-
proach is that is based on the generic basis of association rules and a new metric
called Robustness. Carried out experiments on benchmark datasets confirmed
that GBARMV C approach turns out to be very beneficial for resolving the chal-
lenge of completing missing values, specially at the pre-processing KDD step.
In fact, GBARMV C approach offers a high rate of correct completion accuracy
and outperforms the approach proposed in [22]. The preliminary obtained re-
sults offer exciting additional alternatives avenues of future work. In fact, we are
interested first, in tackling the ”silence problem”, i.e., improving the percentage
of completion. Second, it will be interesting to complete missing values by using
the concept of disjunction-free-sets [8]. These sets allow the extraction of gen-
eralized rules with negative terms which could be interesting for the completion
of missing values. Finally, our future work includes a further evaluation of the
Robustness metric.
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Abstract. Associative classification is a promising new approach that
mainly uses association rule mining in classification. However, most as-
sociative classification approaches suffer from the huge number of the
generated classification rules which takes efforts to select the best ones
in order to construct the classifier. In this paper, a new associative clas-
sification approach called Garc is proposed. Garc takes advantage of
generic basis of association rules in order to reduce the number of associ-
ation rules without jeopardizing the classification accuracy. Furthermore,
since rule ranking plays an important role in the classification task, Garc

proposes two different strategies. The latter are based on some interest-
ingness measures that arise from data mining literature. They are used
in order to select the best rules during classification of new instances. A
detailed description of this method is presented, as well as the experi-
mentation study on 12 benchmark data sets proving that Garc is highly
competitive in terms of accuracy in comparison with popular classifica-
tion approaches.

Keywords: AssociativeClassification,GenericBasis,ClassificationRules,
Generic association rules, Classifier, interestingness measures.

1 Introduction

In the last decade, a new approach called associative classification (AC) was pro-
posed to integrate association rule mining and classification in order to handle
large databases. Given a training data set, the task of an associative classification
algorithm is to discover the classification rules which satisfy the user specified
constraints denoted respectively by minimum support (minsup) and minimum
confidence (minconf ) thresholds. The classifier is built by choosing a subset of
the generated classification rules that could be of use to classify new objects
or instances. Many studies have shown that AC often achieves better accuracy
than do traditional classification techniques [1,2]. In fact, it could discover in-
teresting rules omitted by well known approaches such as C4.5 [3]. However,
the main drawback of this approach is that the number of generated associative
classification rules could be large and takes efforts to retrieve, prune, sort and
select high quality rules among them. To overcome this problem, we propose a
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new approach called Garc which uses generic bases of association rules [4,5].
The main originality of Garc is that it extracts the generic classification rules
directly from a generic basis of association rules, in order to retain a small set
of rules with higher quality and lower redundancy in comparison with current
AC approaches. Moreover, a new score is defined by the Garc approach to find
an effective rule selection during the class label prediction of a new instance, in
the sake of reducing the error rate. This tackled issue is quite challenging, since
the goal is to use generic rules while maintaining a high classifier accuracy.

The remainder of the paper is organized as follows. Section 2 briefly reports
basic concepts of associative classification, scrutinizes related pioneering works
by splitting them into two groups. Generic bases of association rules are surveyed
in section 3. Section 4 presents our proposed approach, where details about
classification rules discovery, building classifier and two different strategies to
classify new instances are discussed. Experimental results and comparisons are
given in section 5. Finally, section 6 concludes this paper and points out future
perspectives.

2 Associative Classification

An association rule is a relation between itemsets having the following form:
R : X ⇒ Y − X , where X and Y are frequent itemsets for a minimal support
minsup, and X ⊂ Y . Itemsets X and (Y −X) are called, respectively, premise and
conclusion of the rule R. An association rule is valid whenever its strength metric,
confidence(R)= support(Y )

support(X) , is greater than or equal to the minimal threshold of
confidence minconf.

An associative classification rule (ACR) is a special case of an association
rule. In fact, an ACR conclusion part is reduced to a single item referring to a
class label. For example, in an ACR such as X ⇒ ci, ci must be a class label.

2.1 Basic Notions

Let us define the classification problem in an association rule task. Let D be a
training set with n attributes (columns) A1,. . . , An and |D| rows. Let C be the
list of class labels.

Definition 1. An object or instance in D can be described as a combination of
attribute names and values ai and an attribute class denoted by ci [6].

Definition 2. An item is described by an attribute name and a value ai [6].

Definition 3. An itemset is described by a set of items contained in an object.

Definition 4. An associative classification rule is of the form: A1, A2,. . ., An ⇒
ci where the premise of the rule is an itemset and the conclusion is a class
attribute.



172 I. Bouzouita and S. Elloumi

A classifier is a set of rules of the form A1, A2, ..., An ⇒ ci where Ai is an item
and ci is a class label. The classifier should be able to predict, as accurately as
possible, the class of an unseen object belonging to the test data set. In fact, it
should maximise the equality between the predicted class and the hidden actual
class. Hence, the AC achieves higher classification accuracy than do traditional
classification approaches [1,2].

2.2 Related Work

Associative classification approaches can be categorized into two groups accord-
ing to the way of the classification rules extraction:

1. Two-stages algorithms:
In the first stage, a set of associative classification rules is produced. Then,
this latter is pruned and placed into a classifier. Examples of such approaches
are CBA [6], CMAR [7], ARC-AC and ARC-BC [8,9].

CBA [6] was one of the first algorithms to use association rule approach
for the classification task. This approach, firstly, generates all the association
rules with certain support and confidence thresholds as candidate rules by
implementing the Apriori algorithm [10]. Then, it selects a small set from
them by evaluating all the generated rules against the training data set.
When predicting the class label for an example, the highest confidence rule,
whose the body is satisfied by the example, is chosen for prediction.

CMAR [7] generates rules in a similar way as do CBA with the exception
that CMAR introduces a CR-tree structure to handle the set of generated
rules and uses a set of them to make a prediction using a weighted χ2
metric [7]. The latter metric evaluates the correlation between the rules.

ARC-AC and ARC-BC have been introduced in [8,9] in the aim of text
categorization. They generate rules similar to the Apriori algorithm and rank
them in the same way as do the CBA rules ranking method. Both ARC-AC
and ARC-BC compute the average confidence of each set of rules grouped
by class label in the conclusion part and select the class label of the group
with the highest confidence average.

2. Integrated algorithms:
The classifier is produced in a single processing step, e.g., CPAR [2] and
Harmony [11]. The CPAR [2] algorithm adopts FOIL [12] strategy in gener-
ating rules from data sets. It seeks for the best rule itemset that brings the
highest gain value among the available ones in the data set. Once the itemset
is identified, the examples satisfying it will be deleted until all the examples
of the data set are covered. The searching process for the best rule itemset is
a time consuming process, since the gain for every possible item needs to be
calculated in order to determine the best item gain. During rule generation
step, CPAR derives not only the best itemset but all close similar ones. It
has been claimed that CPAR improves the classification accuracy whenever
compared to popular associative methods like CBA and CMAR [2].
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Another AC approach called Harmony was proposed in [11]. Harmony uses
an instance-centric rule generation to discover the highest confidence discov-
ering rules. Then, Harmony groups the set of rules into k groups according
to their rules class labels, where k is the total number of distinct class labels
in the training set. Within the same group of rules, Harmony sorts the rules
in the same order as do CBA. To classify a new test instance, Harmony
computes a score for each group of rules and assigns the class label with the
highest score or a set of class labels if the underlying classification is a multi-
class problem. It has been claimed that Harmony improves the efficiency of
the rule generation process and the classification accuracy if compared to
CPAR [2].

It is noteworthy that all the approaches, except CPAR, sort the classifica-
tion rules using support and confidence measures in order to build the classifier.
However, the support confidence measures could be misleading while classifying
new objects. Moreover, all the approaches manipulate the totality number of the
classification rules. Thus, regardless of the approach used to generate the classi-
fier, there are an overwhelming number of rules manipulated during the learning
stage, which is the main problem with AC approaches. In order to overcome this
drawback, our proposed approach tries to gouge this fact by the use of generic
bases of association rules in the classification framework. In the following, we
begin by recalling some key notions about the Formal Concept Analysis (FCA),
that are for need for the derivation of generic bases of association rules.

3 Generic Bases of Association Rules

The problem of the relevance and usefulness of extracted association rules is
of primary importance. Indeed, in most real life databases, thousands and even
millions of highly confident rules are generated among which many are redun-
dant. In the following, we are interested in the lossless information reduction
of association rules, which is based on the extraction of a generic subset of all
association rules, called generic basis from which the remaining (redundant) as-
sociation rules may be derived. In the following, we will present the generic basis
of Bastide et al. [13,4] and IGB [5] after a brief description of FCA mathematical
background necessary for the derivation of generic bases of association rules.

3.1 Mathematical Background

Interested reader for key results from the Galois lattice-based paradigm in FCA
is referred to [14].
Formal context. A formal context is a triplet K = (O, I, R), where O rep-
resents a finite set of transactions, I is a finite set of items and R is a binary
(incidence) relation (i.e., R ⊆ O × I). Each couple (o, i) ∈ R expresses that the
transaction o ∈ O contains the item i ∈ I.

We define two functions summarizing links between subsets of objects and
subsets of attributes induced by R, that maps sets of objects to sets of attributes
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and vice versa. Thus, for a set O ∈ O, we define φ(O) = {i ∈ I|∀o, o ∈ O ⇒
(o, i) ∈ R} and for i ∈ I, ψ(I) = {o ∈ O|∀i, i ∈ I ⇒ (o, i) ∈ R}.

Both operators φ(O) and ψ(I), form a Galois connection between the sets
P(I) and P(O) [14]. Consequently, both compound operators φ and ψ are closure
operators in particular ω=φ◦ψ is a closure operator.
Frequent closed itemset. An itemset I ⊆ I is said to be closed if ω(I) = I(1)

[15]. I is said to be frequent if its relative support, Support(I) = |ψ(I)|
|O| , exceeds

a user-defined minimum threshold, denoted minsup.
Minimal generator. [4] An itemset g ⊆ I is said to be minimal generator of a
closed itemset f , if and only if ω(g) = f and it does not exist g1 ⊂ g such that
ω(g1) = f . The set Gf of the minimal generators of f is: Gf = {g ⊆ I | ω(g) = f
∧ � g1 ⊂ g such as ω(g1) = f}.

3.2 The Generic Basis for Exact Association Rules (GBE) and the
Informative Basis for Approximate Association Rules (GBA)

Since the apparition of the approach based on the extraction of the frequent
closed itemsets [15], several generic bases have been introduced among which
those of Bastide et al. [4].

Exact association rules, of the form R: X c⇒Y, are implications between two
itemsets X and XY whose closures are identical, i.e., ω(X) = ω(XY ). Thus,
support(X)=support(XY), i.e., confidence(R)=1. The generic basis for exact
association rules is defined as follows:

Definition 5. Let FCIK be the set of frequent closed itemsets extracted from an
extraction context K. For each frequent closed itemset f∈ FCIK, let Gf be the
set of its minimal generators. The generic basis of exact association rules GBE
is given by: GBE = {R: g ⇒ (f - g) | f ∈ FCIK and g ∈ Gf and g 	= f (2)}.

Bastide et al. also characterized the informative basis for approximate association
rules, defined as follows [4]:

Definition 6. Let FCIK be the set of frequent closed itemsets extracted from
an extraction context K. The GBA basis is defined as follows [4]:
GBA = {R | R: g ⇒ (f1 - g) | f, f1 ∈ FCIK and ω(g) = f and f 
 f1 and
Confidence(R) ≥ minconf }.
The pair (GBE, GBA) is informative, sound and lossless [4] and rules belonging
to this pair are referred as informative association rules. In the following, we
will present IGB basis.

3.3 Informative Generic Basis (IGB)

The IGB basis has been shown to be informative and more compact than the
generic basis of Bastide et al. [5]. The IGB basis is defined as follows:
1 The closure operator is indicated by ω.
2 The condition g �= f ensures discarding non-informative rules of the form g ⇒ ∅.
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Definition 7. Let FCIK be the set of frequent closed itemsets and Gf be the set
of minimal generators of all the frequent itemsets included or equal to a closed
frequent itemset f .

IGB = {R: gs ⇒ (f1 - gs) | f, f1 ∈ FCIK and (f - gs) 	= ∅ and gs ∈ Gf and
f1 
 f and confidence(R) ≥ minconf and � g′ ⊂ gs such that confidence(g′ ⇒
f1-g′)≥ minconf}.

Generic rules of IGB present implications between the smallest premises and the
largest conclusions among possible ones. This feature is interesting, especially
for our approach detailed hereafter.

4 GARC: Generic Associative Rules Based Classifier

In this section, we propose a new AC method Garc
3 that extracts the generic

classification rules directly from a generic basis of association rules in order to
overcome the drawback of the current AC approaches, e.g., the generation of a
large number of associative classification rules. Continuous attributes take values
that are real numbers within some range defined by minimum and maximum
limits. In such cases, the given range is split into a number of sub-ranges and a
unique number is allocated to each sub-range. In the following, we will present
and explain in details the Garc approach.

4.1 Rule Generation

In this step, Garc extracts the generic basis of association rules. Once obtained,
generic rules are filtered out to retain only rules whose conclusions include a class
label. Then, by applying the decomposition axiom[16], we obtain new rules of
the form A1, A2, ..., An ⇒ ci. Even though, the obtained rules are redundant,
their generation is mandatory to guarantee a maximal cover of the necessary
rules.

The IGB basis is composed of rules with a small premise which is an advan-
tage for the classification framework when the rules imply the same class. For
example, let us consider two rules R1: A B C D ⇒cl1 and R2: B C ⇒cl1. R1

and R2 have the same attribute conclusion. R2 is considered to be more inter-
esting than R1, since it is needless to satisfy the properties A D to choose the
class cl1. Hence, R2 implies less constraints and can match more objects from
a given population than R1.

Let us consider a new object Ox: B C D. If R1 is the unique rule in the clas-
sifier, we wont be able to classify Ox, because the item A does not permit the
matching. However, the rule R2, which has a smaller premise than R1, can clas-
sify Ox. This example shows the importance of the generic rules and, especially,
the use of the IGB basis to extract the generic classification rules. In fact, such
set of rules is smaller than the number of all the classification rules and their
use is beneficial for classifying new objects.
3 The acronym Garc stands for: Generic Association Rules based Classifier.
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4.2 Classifier Builder

Once the generic classification rules obtained, a total order on rules is set as
follows. Given two rules R1 and R2, R1 is said to precede R2, denoted R1 > R2

if the following conditions are fulfilled:

– confidence(R1) > confidence(R2) or
– confidence(R1) = confidence(R2) and support(R1) > support(R2) or
– confidence(R1) = confidence(R2) and support(R1) = support(R2) and R1

is generated before R2.

The data set coverage is similar to that in CBA. In fact, a data object of the
training set is removed after it is covered by a selected generic rule.

The major difference with current AC approaches [6,7,8,9,11] is that we use
generic ACR directly deduced from generic bases of association rules to learn
the classifier as shown by algorithm 1.

Data: D: Training data, GR: a set of generic classification rules
Results: C: Classifier
Begin

GR=sort(GR) in a descending order according to confidence and support values;
Foreach rule r ∈ GR do

Foreach object d ∈ D do
If d matches r.premise then

remove d from D and mark r if it correctly classifies d;

If r is marked then
insert r at the end of C;

select the major class from D as a default class;
return Classifier C ;

End

Algorithm 1. Garc: selected generic rules based on database coverage

4.3 New Instance Classification

After a set of rules is selected for classification, Garc is ready to classify new
objects. Some methods such as those described in [6,8,9,11] are based on the
support-confidence order to classify a new object. However, the confidence mea-
sure selection could be misleading, since it may identify a rule A ⇒ B as an
interesting one even though, the occurrence of A does not imply the occurrence
of B [17]. In fact, the confidence can be deceiving since it is only an estimate of
the conditional probability of itemset B given an itemset A and does not mea-
sure the actual strength of the implication between A and B. Let us consider the
example shown in Table 1 which shows the association between an item A and
a class attribute B. A and A represent respectively the presence and absence of
item A, B represents a class attribute and B the complement of B. We consider
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the associative classification A ⇒ B. The confidence of this rule is given by confi-
dence(A ⇒ B)= support(AB)

support(A) = 201
250 = 80.4%. Hence, this rule has a high confidence

value.
In the following, we will introduce interestingness measures of association rules

and give a semantic interpretation for each of them.

Table 1. Example

B B Total

A 201 49 250

A 699 51 750

Total 900 100 1000

Lift or Interest. The lift metric [17] computes the correlation between A and
B. For the example depicted by Table 1, the lift of the rule A ⇒ B is given by:
lift(A⇒B)= support(AB)

support(A)×support(B) = 0.201
0.250×0.900 = 0.893.

The fact that this quantity is less than 1 indicates negative correlation between
A and B.

If the resulting value is greater than 1, then A and B are said to be positively
correlated. If the resulting value is equal to 1, then A and B are independent and
there is no correlation between them.

Least Confidence (or Surprise). The least confidence (or surprise) [18] met-
ric is computed as follows:

Surprise (A ⇒ B) = (support (AB) - support (AB))/ support (B)
logical rule: surprise (A ⇒ B) = P (A)/ P (B)
A and B independent: surprise (A ⇒ B) = 2 P (A) - (P (A)/ P (B))
A and B incompatible: surprise (A ⇒ B) = - P (A)/ P (B)
The surprise metric selects rules, even with small support value, having the

premise A always with the conclusion B and nowhere else.

Loevinger. Loevinger metric [18] is computed as follows:
loevinger(A ⇒ B) = (P(B/A)-P(B))/P(B)
Unlike confidence metric, Loevinger metric does not suffer form the problem

of producing misleading rules.

Score metric. To avoid the lacuna of using only confidence metric, we define
a new lift based score formula as follows:

Score = 1
|Premise| × lift

|Premise|
numberofitems

= 1
|Premise| × ( support(Rule)

support(Premise)×support(Conclusion) )
|Premise|

numberofitems

The introduced score includes the lift metric. In fact, the lift finds interesting
relationships between A and B. It computes the correlation between the occur-
rence of A and B by measuring the actual strength of the implication between
them which is interesting for the classification framework. Moreover, the lift is
divided by the cardinality of the rule premise part in order to give a preference
to rules with small premises.
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Fig. 1. Garc classifying instances strategy 1

Fig. 2. Garc classifying instances strategy 2

In the following, we have considered two different strategies using the intro-
duced measures in order to choose the best rules for classifying a new object.

1. Strategy 1. In the first strategy [19], illustrated by Figure 1, Garc collects
the subset of rules matching the new object attributes from the classifier.
Trivially, if all the rules matching it have the same class, Garc just assigns
that class to the new object. If the rules do not imply the same class attribute,
the score firing is computed for each rule. The rule with the highest score
value is selected to classify the new object.

2. Strategy 2. The intuition behind this second strategy, illustrated by Fig-
ure 2, is that we cannot expect that a single measure can perfectly predict
the class of an unseen object. That’s why, Garc collects the subset of rules
matching the new object attributes from the classifier. Then, for each mea-
sure presented earlier, Garc looks for the rule with the highest value among
the set of the potential rules. The rules obtained from the different measures
represent the collector classifier. From this latter set of rules, Garc assigns
the major class to the new object.

Example 1. The training data set D shown by Figure 3 (a) is composed of twelve
objects. Each object is described by six categorical attributes and belongs to a
class. We have set the minsup and minconf values to 1% and 80%, respectively.
We extract the generic basis IGB according to definition 7. Then, we generate
generic ACR by applying the decomposition axiom to obtain rules of the form
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A1 A2 A3 A4 A5 A6 Class

O1 11 21 31 42 52 62 Cl1

O2 11 21 31 42 53 61 Cl1

O3 12 23 32 43 51 61 Cl1

O4 12 23 32 43 51 62 Cl1

O5 12 23 32 43 52 61 Cl2

O6 12 23 32 43 52 62 Cl2

O7 13 21 31 41 51 62 Cl1

O8 13 21 31 41 52 61 Cl2

O9 13 21 31 41 52 62 Cl2

O10 13 21 31 42 51 61 Cl1

O11 13 21 31 42 52 62 Cl2

O12 13 21 31 43 51 61 Cl1

R1 : (A5 = 51)and(A6 = 62) ⇒ Cl1

R2 : (A5 = 52) ⇒ Cl2

R3 : (A1 = 11) ⇒ Cl1

R4 : (A3 = 32)and(A5 = 51) ⇒ Cl1

R5 : (A4 = 41)and(A6 = 61) ⇒ Cl1

(a)

(b)

Fig. 3. (a): D: Training data (b): Garc Classifier for minsup=1% and minconf =80%

A1, A2, . . . , A6 ⇒ ci with ci ∈ {Cl1, Cl2}. Once the generic ACR obtained, they
are sorted on a descending order according to the support and confidence values
as defined in section 4.2. Then, we apply the cover algorithm where each object
of the training data D has to be satisfied (covered) by one rule before it is
no longer considered in the classifier generation process and removed from the
training data. The resulting classifier is given by Figure 3 (b).

5 Experimental Study

We have conducted experiments to evaluate the accuracy of our proposed ap-
proach Garc, developed in C++, and compared it to the well known classifiers
CBA, ID3, C4.5 and Harmony. Experiments were conducted using 12 data sets
taken from UCI Machine Learning Repository(4). The chosen data sets were
discretized using the LUCS-KDD (5) software.

The features of these data sets are summarized in Table 2. All the experiments
were performed on a 2.4 GHz Pentium IV PC under Redhat Linux.

The classification accuracy can be used to evaluate the performance of classi-
fication methods. It is the percentage of correctly classified examples in the test
set and can be measured by splitting the data sets into a training set and a test
set.

During experiments, we have used available test sets for data sets Monks1,
Monks2 and Monks3 and we applied the 10 cross-validation for the rest of data
sets, in which a data set is divided into 10 subsets; each subset is in turn used
as testing data while the remaining data is used as the training data set; then
the average accuracy across all 10 trials is reported.
4 Available at http://www.ics.uci.edu/∼mlearn/MLRepository.html
5 Available at http://www.csc.liv.ac.uk/∼frans/KDD/Software/LUCS-KDD-DN/

lucs-kdd DN.html



180 I. Bouzouita and S. Elloumi

Table 2. Data set description

Data set # attributes # transactions # classes

Monks1 6 124 2

Monks2 6 169 2

Monks3 6 122 2

Pima 38 768 2

TicTacToe 29 958 2

Zoo 42 101 7

Iris 19 150 3

Wine 68 178 3

Glass 48 214 7

Flare 39 1389 9

Pageblocks 46 5473 5

Nursery 32 12960 5

In order to extract generic association rules, we used the Prince algorithm [20]
to generate both the pair (GBE, GBA) and IGB bases. To evaluate C4.5 and ID3,
we used the Weka

(6) software and the Harmony prototype was kindly provided
by its authors. We have implemented the CBA algorithm in C++ under Linux.

During these experiments, we evaluated the introduced new strategy 2 for
classifying new instances vs the strategy 1 adopted initially by Garc. Then, we
compared the effectiveness of using different interestingness measures of asso-
ciation rules for the classification framework with reference to accuracy. After
that, we compared the effectiveness of the use of generic bases of the pair (GBE ,
GBA) and IGB for the classification framework. For this, we conducted experi-
ments with reference to accuracy in order to compare the classifiers GarcB and
GarcI issued respectively from the generic bases of the pair (GBE , GBA) and
IGB without using the score firing. Moreover, to show the impact of the score
firing on the quality of the produced classifiers, we report the accuracy results
of GarcsB and Garc deduced respectively from the generic bases of the pair
(GBE , GBA) and IGB using the score firing.

In the following, we evaluate the introduced new strategy 2 for classifying new
instances vs the strategy 1 adopted initially by Garc. For this, we conducted
experiments with reference to accuracy in order to compare the measures impact
while classifying new instances.

5.1 Comparison of Garc Classifying Instances Strategies

Table 3 shows that strategy 1 gives better accuracy for three data sets when
compared to strategy 2. This is explained by the fact that the score used in
strategy 1 gives the best prediction accuracy for these data sets. In fact, the use
of the other measures in strategy 2 jeopardizes the classification accuracy. Thus,
strategy 1 will be adopted by Garc in the following.
6 Available at http://www.cs.waikato.ac.nz/ml/Weka
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Table 3. Accuracy comparison of Garc classifying instances strategies for min-
sup=10% and minconf =80%

Garc Accuracy

Data set Strategy 1 Strategy 2

Monks1 92.0 88.9

Monks2 56.0 71.0
Monks3 96.2 95.0

Pima 73.0 73.0

TicTacToe 65.0 67.5
Zoo 90.0 90.0

Iris 95.4 95.4

Wine 89.8 89.8

Glass 64.0 58.8

Flare 85.0 85.0

Pageblocks 89.7 89.7

Nursery 66.2 66.2

5.2 Evaluating Measures Impact

Table 4 represents a comparison between the accuracy given by the measures
used by Garc while classifying new instances [19].

Table 4 points out that the use of the score firing permits to achieve the
best accuracy for eight data sets among eleven. The use of the surprise measure
permits to achieve the best accuracy for three data sets. We can conclude that a
multi-parameterizable tool will be efficient for users in order to choose the best
measure suitable for the studied data set.

In the following, we introduce the experimental results showing the impact of
the score firing on the quality of the produced classifiers, we report the accuracy
results of GarcsB and Garc deduced respectively from the generic bases of the
pair (GBE , GBA) and IGB using the score firing.

Table 4. Evaluating measures vs accuracy

Data set Surprise Loevinger Lift Score

Monks1 42.6 62.5 59.2 92.0
Monks2 67.1 59.0 49.3 56.0

Monks3 97.2 92.8 56.7 96.3

Pima 72.9 72.9 72.9 73.0
TicTacToe 63.0 63.0 63.0 65.0
Zoo 83.0 83.0 67.2 90.0
Iris 94.0 89.3 95.3 95.4
Wine 92.8 81.1 88.3 89.8

Glass 52.0 52.0 52.0 64.0
Flare 84.7 84.6 84.7 85.0
Pageblocks 89.7 89.7 89.7 89.8
Nursery 66,2 66,2 66,2 66,2
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5.3 The Score Firing Impact

Table 5 represents a comparison between the classifiers deduced from the generic
bases of the pair (GBE , GBA) and IGB when using or not the score firing.

Table 5 points out that the use of the score firing increases the accuracy per-
formance for the classifiers deduced from the pair (GBE , GBA). In fact, GarcsB

has a better average accuracy than GarcB. Moreover, for the classifiers deduced
from IGB, the use of the score firing improves the accuracy for four data sets. In
fact, Garc outperforms GarcI on Zoo, Iris, Wine and Glass data sets. Thus,
the best average accuracy, highlighted in bold print, is given by Garc. Fur-
thermore, as shown in Table 6, the number of rules generated by Garc is less
than that generated by the approaches deduced from the pair (GBE , GBA), i.e.,
GarcB and GarcsB.

In the following, we put the focus on comparing Garc accuracy by using
the score firing versus that of the well known classifiers ID3, C4.5, CBA and
Harmony.

5.4 Generic Classification Rules Impact

Table 7 represents the accuracy of the classification systems generated by ID3,
C4.5, CBA, Harmony and Garc on the twelve benchmark data sets. The best
accuracy values obtained for each of data sets is highlighted in bold print. Table 7
shows that Garc outperforms the traditional classification approaches, i.e., ID3
and C4.5 on six data sets and the associative classification approaches on nine
data sets. Statistics depicted by Table 7 confirm the fruitful impact of the use
of the generic rules. The main reason for this is that Garc classifier contains
generic rules with small premises. In fact, this kind of rule allows to classify more
objects than those with large premises.

Table 5. Accuracy comparison of GarcB, GarcI , GarcsB and Garc algorithms for
minsup=10% and minconf =80%

Without using the score Using the score

Data set GarcB GarcI GarcsB Garc

Monks1 92.0 92.0 92.0 92.0

Monks2 56.0 56.0 56.0 56.0

Monks3 96.3 96.3 96.3 96.3

Pima 73.0 73.0 73.0 73.0

TicTacToe 65.0 67.4 65.0 65.0

Zoo 89.0 89.0 89.0 90.0

Iris 95.0 94.7 95.6 95.4

Wine 89.2 89.4 90.0 89.8

Glass 58.0 59.3 58.0 64.0

Flare 85.0 85.0 85.0 85.0

Pageblocks 92.0 89.8 92.0 89.8

Nursery 66,2 66,2 66,2 66,2

Average accuracy 79.7 80.0 79.9 80.4
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Table 6. Number of associative classification rules for minsup=10% and minconf =80%

Data set # generic ACR deduced # generic ACR deduced
from IGB from (GBE , GBA)

Monks1 31 12

Monks2 4 4

Monks3 25 20

Pima 20 20

TicTacToe 15 15

Zoo 832 1071

Iris 22 24

Wine 329 471

Glass 31 36

Flare 237 561

Pageblocks 128 128

Nursery 12 12

Table 7. Accuracy comparison of ID3, C4.5, CBA, Harmony and Garc algorithms
for minsup=1% and minconf =80%

Data set ID3 C4.5 CBA Harmony Garc

Monks1 77.0 75.0 91.6 83.0 91.6
Monks2 64.0 65.0 56.0 48.0 73.8
Monks3 94.0 97.0 95.1 82.0 95.1

Pima 71.3 72.9 73.0 73.0 73.0
TicTacToe 83.5 85.6 63.1 81.0 78.6

Zoo 98.0 92.0 82.2 90.0 95.1

Iris 94.0 94.0 95.3 94.7 95.4
Wine 84.8 87.0 89.5 63.0 94.4
Glass 64.0 69.1 52.0 81.5 65.9

Flare 80.1 84.7 85.0 83.0 85.0
Pageblocks 92.3 92.4 89.0 91.0 91.0

Nursery 95,0 95,4 88,8 90,3 88,8

6 Conclusion and Future Work

In this paper, we reported a synthetic discussion about AC related works and
divided them into two groups according to the way of the classification rules
extraction. We also introduced a new classification approach called Garc that
aims to prune the set of classification rules without jeopardizing the accuracy
and even ameliorates the predictive power. To this end, Garc uses generic bases
of association rules to drastically reduce the number of associative classification
rules. We presented the results given by the use of two different generic basis,
i.e., the pair (GBE, GBA) and IGB in order to build the classifier. Moreover,
Garc proposes two strategies to classify new instances based in the use of inter-
estingness measures in order to ameliorate the rules selection for unseen objects.
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Carried out experiments outlined that Garc is highly competitive in terms of
accuracy in comparison with popular classification methods.

Thus, associative classification is becoming a common approach in classifica-
tion since it extracts very competitive classifiers in terms of accuracy if compared
with rule induction, probabilistic, covering and decision tree approaches.

However, challenges such as efficiency of rule discovery methods, the expo-
nential growth of rules, rule ranking and new metrics investigation need more
consideration. Furthermore, another associative classification avenues for future
work address the following issues:

– Missing values in test data. The problem of dealing with missing values in
test data sets has not yet been explored well in AC approaches. In fact, most
of the existing AC approaches assume that data set objects are complete and
there is no missing values by building classifiers in training data sets without
considering the missing values problem. In fact, it will be more interesting if
we treat in a particular way missing values that could provide a good deal
of information.

– Incremental learning. AC approaches generate classifiers by considering
the hole training data set. However, in the real world data, modification
could occur on the training data set. For instance, in applications like medical
diagnosis, adding or editing information is an operation which could occur in
any time. Thus, the necessity of updating the classifier which needs to scan
one more time the training set. The repetitive scan has an expensive cost in
terms of computational time. That’s why, it will be interesting to consider
incremental AC as future research work.
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Ferrand, Université Blaise Pascal, France (2000)

14. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999)
15. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient Mining of Association

Rules Using Closed Itemset Lattices. Journal of Information Systems 24, 25–46
(1999)

16. BenYahia, S., Nguifo, E.M.: Revisiting generic bases of association rules. In: Kam-
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Abstract. We review the main properties of the quality measure MGK,
which has been shown to be the normalized quality measure associated
to most of the quality measures used in the data mining literature, and
which enables to handle negative association rules. On the other hand,
we characterize bases for MGK-valid association rules in terms of a clo-
sure operator induced by a Galois connection. Thus, these bases can be
derived from a Galois lattice, as do well known bases for Confidence-valid
association rules.

Keywords. Closure operator, Basis, Galois connection, Negative asso-
ciation rule, Quality measure.

1 Introduction

Association rules reveal attributes (or attribute values) that occur together fre-
quently in a data set. Their relevance is commonly assessed by means of quality
measures. Several quality measures have been proposed in the literature [1], the
most popular of them being the well-known Support and Confidence [2]. A ma-
jor problem faced in association rule mining is the large number of valid rules,
i.e., rules that meet specific constraints relative to a given (set of) quality mea-
sure(s). Such a situation is generally due to the presence of many redundant
and/or trivial rules in the set of valid ones. A way to cope with these redundant
and trivial rules is to generate a basis, i.e., a minimal set of rules from which all
the valid rules can be derived, using some inference axioms.

In this paper, we consider the quality measure MGK independently introduced
in [3] and in [4], and which has been shown to be the normalized quality measure
associated to most of the quality measures used in the data mining literature
[5]. On the one hand, we review its main properties. On the other hand, we
characterize bases for MGK-valid association rules in terms of a closure opera-
tor induced by a Galois connection [6]. This result shows that these bases can
be derived from a Galois lattice, as do well known bases for Confidence-valid
association rules [7,8]. The rest of the paper is organized as follows.

Basic concepts relative to association rules and Galois lattices, and the main
properties of the quality measure MGK are presented in Section 2. Section 3 is

S. Ben Yahia et al. (Eds.): CLA 2006, LNAI 4923, pp. 186–197, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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devoted to two known bases for Confidence-valid association rules, whereas the
bases we propose for MGK-valid rules are dealt with in Section 4. Finally, a short
conclusion is included in the end of the paper.

2 Association Rules, Quality Measures, Galois Lattices

2.1 Association Rules

In this paper, we place ourselves in the framework of a binary context (E, V),
where E is a finite entity set and V a finite set of boolean variables (or items)
defined on E. The subsets of V will be called itemsets, and an entity “e” will be
said to contain an item “x” if x(e) = 1.

Definition 1. An association rule of (E, V) is an ordered pair (X, Y ) of item-
sets, denoted by X→Y , where Y is required to be nonempty. The itemsets X and
Y are respectively called the “premise” and the “consequent” of the association
rule X→Y .

Given an itemset X ,

• X ′ will denote the set of entities containing all the items of X , i.e.,

X ′ = {e ∈ E : ∀x ∈ X [x(e) = 1]}, and

• X will denote the negation of X , i.e., X(e) = 1 if and only if there exists
x ∈ X such that x(e) = 0; it may be noticed that X

′
= E \ X ′.

Table 1 presents a binary context K = (E, V), where E = {e1, e2, e3, e4, e5}
and V = {A, B, C, D, E}. If we let X = {B, C} then X ′ = {e2, e3, e5} and
X

′
= {e1, e4}.

Table 1. A binary context

A B C D E

e1 1 0 1 1 0
e2 0 1 1 0 1
e3 1 1 1 0 1
e4 0 1 0 0 1
e5 1 1 1 0 1

According to the definition above, the binary context (E, V) contains 2|V|

(2|V| −1) association rules among which several are certainly irrelevant. To cope
with this, quality measures, also called interestingness measures, are used to
capture only those association rules meeting some given constraints [1]. In the
sequel, E will denote a finite entity set, V a finite set of boolean variables defined
on E, and K the binary context (E, V).
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2.2 Quality Measures for Association Rules

Let Σ denote the set of association rules of the binary context K.

Definition 2. A quality measure for the association rules of K is a real-valued
map μ defined on Σ.

There are several quality measures introduced in the literature, the most popular
of them being Support and Confidence [2].

The support of an itemset X , denoted by Supp(X), is the proportion of entities
in E containing all the items belonging to X ; it is defined by Supp(X) = |X′|

|E| ,
where, for any finite set W , |W | denotes the number of its elements. Denoting
by p the intuitive probability measure defined on (E, P(E)) by p(E) = |E|

|E| for
E ⊆ E, the support of X can be written in terms of p as Supp(X) = p(X ′).

The support of an association rule X→Y is defined by:

Supp(X→Y ) = Supp(X ∪ Y ) = p((X ∪ Y )′) = p(X ′ ∩ Y ′).

The confidence of X→Y , denoted by Conf(X→Y ), is the proportion of entities
containing all the items belonging to Y , among those entities containing all the
items belonging to X ; it is defined by:

Conf(X→Y ) =
Supp(X→Y )

Supp(X)
=

p(X ′ ∩ Y ′)
p(X ′)

= p(Y ′|X ′),

where p(Y ′|X ′) is the conditional probability of Y ′ given X ′.
The two following straightforward inequalities involving conditional probabil-

ities may help to understand the definition of the quality measure MGK below.

(i) if p(Y ′|X ′) ≥ p(Y ′), then 0 ≤ p(Y ′|X ′) − p(Y ′) ≤ 1 − p(Y ′);
(ii) if p(Y ′|X ′) ≤ p(Y ′), then −p(Y ′) ≤ p(Y ′|X ′) − p(Y ′) ≤ 0.

The quality measure MGK independently introduced in [3] and in [4], is defined
by:

MGK(X→Y ) =

{
p(Y ′|X′)−p(Y ′)

1−p(Y ′) if p(Y ′|X ′) ≥ p(Y ′);
p(Y ′|X′)−p(Y ′)

p(Y ′) if p(Y ′|X ′) ≤ p(Y ′).

In this paper, we will be mainly concerned with the quality measures Confi-
dence and MGK. The quality measure Confidence is clearly a probability measure
and its properties are more or less well known. For instance, Conf(X→Y ) = 0
if and only if X and Y are incompatible. Moreover, the Confidence measure
is not symmetric (i.e. Conf(X→Y ) is not always equal to Conf(Y →X)), and
Conf(X→Y ) = 1 if and only if X ′ ⊆ Y ′, i.e., if X logically implies Y . How-
ever, the Confidence measure does not reflect the independence between the
premise and the consequent of an association rule. Indeed, in case of indepen-
dence between X and Y , p(Y ′|X ′) = p(Y ′) and, equivalently, p(X ′|Y ′) = p(X ′).
Furthermore, as quoted in [9], Confidence does not satisfy the logical principle
of contraposition, i.e., Conf(Y →X) is not always equal to Conf(X→Y ).
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On the other hand, it can be easily checked that MGK satisfies the five fol-
lowing properties:

1. MGK(X→Y ) = −1 if and only if X and Y are incompatible, i.e., if p(X ′ ∩
Y ′) = 0;

2. −1 ≤ MGK(X→Y ) < 0 if and only if X disfavors Y (or X and Y are
negatively dependent), i.e., if p(Y ′|X ′) < p(Y ′);

3. MGK(X→Y ) = 0 if and only if X and Y are independent, i.e., if p(X ′∩Y ′) =
p(X ′)p(Y ′);

4. 0 < MGK(X→Y ) ≤ 1 if and only if X favors Y (or X and Y are positively
dependent), i.e., if p(Y ′|X ′) > p(Y ′);

5. MGK(X→Y ) = 1 if and only if X logically implies Y , i.e., if p(Y ′|X ′) = 1.

This shows that the values of MGK lie into the interval [−1, +1] as well as
they reflect references situations such as incompatibility, negative dependence,
independence, positive dependence, and logical implication between the premise
and the consequent. Thus, according to [5], MGK is a normalized quality measure.
Moreover, it has been shown in [5] that MGK is the normalized quality measure
associated to most of the quality measures proposed in the literature, including
Support and Confidence [2], φ- coefficient [10], Laplace, Rule interest, Cosine and
Kappa (cf. [11]), and Lift [12]. That is, if we normalize such a quality measure by
transforming its expression in order to make its values both lie into the interval
[−1, +1] and reflect the five reference situations mentioned above, then we obtain
the quality measure MGK. In other words, all these quality measures can be
written as affine functions of MGK, with coefficients depending on the support
of the premise and/or the support of the consequent. Furthermore, unlike several
other quality measures, MGK satisfies the logical principle of contraposition in
case of positive dependence, i.e., MGK(Y →X) = MGK(X→Y ) when X favors
Y [13]. In addition, the greater the absolute value of MGK(X→Y ), the stronger
the (positive or negative) dependence between X and Y .

The following result provides us with relationships between positive depen-
dence and negative dependence.

Proposition 1. Let X and Y be two itemsets. Then the three following condi-
tions are equivalent.

(1) X disfavors Y .
(2) X favors Y .
(3) X favors Y .

This result shows that the so-called right-hand side negative (RHSN) rule X→Y
and/or the so-called left-hand side negative (LHSN) rule (X→Y ) can be of
interest when X disfavors Y . This is an additional motivation for our choice of
MGK because MGK enables to handle negative rules as well as positive ones, i.e.,
those which do not involve negation of itemsets.

It should be noticed that only a rule whose premise favors its consequent is in-
teresting, regardless if it is a positive or a negative rule. Thus, let MGK

f (X→Y )
denote the value of MGK(X→Y ) when X favors Y , i.e.,
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MGK
f (X→Y ) = p(Y ′|X′)−p(Y ′)

1−p(Y ′) , and let MGK
df (X→Y ) denote the value of

MGK(X→Y ) when X disfavors Y , i.e., MGK
df (X→Y ) = p(Y ′|X′)−p(Y ′)

p(Y ′) . The
next result shows that the value of MGK for a RHSN rule is equal to that of
MGK for the corresponding positive rule, on the one hand, and, on the other
hand, this value both determines and can be determined from that for the cor-
responding LHSN rule.

Proposition 2. Let X and Y be two itemsets. Then the two following properties
hold.

(1) MGK
f (X→Y ) = −MGK

df (X→Y ).
(2) MGK

f (X→Y ) = P (X′)
1−P (X′)

P (Y ′)
1−P (Y ′)MGK

f (X→Y ).

Definition 3. Let μ be a quality measure, and let α > 0 be a positive real
number. Let X→Y be a positive or a (right-hand side, left-hand side or both
side) negative association rule. Then X→Y is said to be valid w.r.t. α in the
sense of μ or, simply, (μ, α)-valid if μ(X→Y ) ≥ α. When the meaning is clear
from the context, we omit the validity threshold α and/or the quality measure μ,
and talk about μ-valid or, simply, valid association rules.

In the sequel, α will denote a minimum validity threshold belonging to the
interval ]0, 1[. As a consequence of Proposition 2 above, LHSN MGK-valid rules
can be obtained from RHSN ones, as stated in the next corollary.

Corollary 1. If X and Y are two itemsets such that X disfavors Y , then
MGK

f (X→Y ) ≥ α if and only if MGK
f (X→Y ) ≥ α( 1

Supp(X) − 1)( 1
Supp(Y ) − 1).

To summarize, we need to consider negative rules as well as positive ones. How-
ever, LHSN MGK-valid rules can be derived from RHSN ones w.r.t. a correspond-
ing validity threshold, so that we can restrict ourselves to generate only RHSN
MGK-valid rules. Moreover, as MGK satisfies the logical principle of contraposi-
tion when the premise favors the consequent, the both side negative MGK-valid
rules can also be derived from their corresponding positive MGK-valid ones w.r.t.
the same validity threshold. Therefore, we will consider only positive rules and
RHSN rules in the sequel. Hence, we will simply use the term negative rule to
mean RHSN rule.

One of the major problems faced in association rule mining is the huge number
of generated rules. Indeed, despite the fact that a (set of) quality measure(s) is
used in order to capture only those rules meeting some given constraints, the
set of generated rules can still be of a very large size, due to the presence of
redundant and/or trivial rules. Indeed, for a given quality measure μ, the set
of μ-valid association rules often contains many rules that are redundant in
the sense that they can be derived from other μ-valid rules. For instance, if
Conf(X→Y ) = 1 and Conf(Y →Z) = 1, then Conf(X→Z) = 1. Thus, if we look
for Confidence-exact association rules, i.e. rules whose confidence is equal to 1,
then the rule X→Z is redundant when the rules X→Y and Y →Z are given,
since it can be derived from these ones.
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On the other hand, some rules are valid whatever the validity threshold is,
and thus, are not informative at all. For instance, for any itemsets X and Y
with Y ⊆X , the rule X→Y is Confidence-exact. Therefore, if we are interested
in informative Confidence-exact association rules, then the rules of the form
X→Y with Y ⊆X are not worth generating.

A way to cope with redundant or non informative association rules without
loss of information is to generate a basis for the set of valid rules. Indeed, a basis
is a set of rules from which any valid rule can be derived using given inference
axioms, and which is minimal (w.r.t. set inclusion) among the rule sets having
this property. In this paper, we characterize bases for MGK-valid association
rules of a binary context, in terms of the closure operator induced by a Galois
connection. Thus, these bases can be derived from a Galois lattice, as do bases
for positive Confidence-valid rules.

2.3 The Galois Lattices of a Binary Context

The binary context K induces a Galois connection between the partially ordered
sets (P(E), ⊆) and (P(V), ⊆) by means of the maps

f : X 
→ ∩
x∈X

{v ∈ V : v(x) = 1} = X ′

and
g : Y 
→ ∩

v∈Y
{x ∈ E : v(x) = 1},

for X ⊆ E and Y ⊆ V [14]. Moreover, the Galois connection (f, g) induces, in
turn, a closure operator ϕ := f ◦ g on (P(V), ⊆) [6]. That is, for X, Y ⊆ V:

(C1) X ⊆ ϕ(X) (extensivity);
(C2) X ⊆ Y implies ϕ(X) ⊆ ϕ(Y ) (isotony);
(C3) ϕ(ϕ(X)) = ϕ(X) (idempotence).

Let G(K) denote the set of all pairs (X, Y ) ∈ P(E) × P(V) such that ϕ(Y ) = Y
and g(Y ) = X . Then G(K), endowed with the order defined by (X1, Y1) ≤
(X2, Y2) if and only if X1 ⊆ X2 (or, equivalently Y2 ⊆ Y1), is a complete lattice
called the Galois lattice of the binary context K [14], also known as the concept
lattice of the formal context (E, V, R), where R is the binary relation from E to
V defined by xRv if and only if v(x) = 1 [15].

Example 1. Consider the binary context K given in Table 1. Then, the pair
({e2, e3, e5}, {B, C}) is a member of G(K). But though ϕ({B, C}) = {B, C},
({e2, e3}, {B, C}) does not belong to G(K) since g({B, C}) �= {e2, e3}.

3 Bases for Confidence-Valid Association Rules

This section is intended to remind two known bases for positive Confidence-valid
association rules, namely, the Luxenburger basis for approximate rules and the
Guigues-Duquenne basis for exact ones.
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The set of positive Confidence-exact association rules is a full implicational
system, i.e., it satisfies the following Armstrong’s inference axioms for all item-
sets X, Y, Z [16]:

(PE1) Y ⊆X implies X→Y ;
(PE2) X→Y and Y →Z imply X→Z;
(PE3) X→Y and Z→T imply X ∪ Z→Y ∪ T .

Thus, the Guigues-Duquenne basis [7] for full implicational systems is by the
way a basis for positive Confidence-exact rules. To define this basis, we need to
recall the notion of a critical set of a closure operator.

Consider the closure operator ϕ, induced on P(V) by the Galois connection
(f, g) defined above. An itemset X is said to be ϕ-closed if ϕ(X) = X ; it is said
to be ϕ-quasi-closed if it is not ϕ-closed and for all Y ⊂ X , either ϕ(Y ) ⊂ X or
X ⊂ ϕ(Y ) [17]; it is said to be ϕ-critical if it is minimal among the ϕ-quasi-closed
itemsets Y such that ϕ(Y ) = ϕ(X) [18]. A definition of quasi-closed sets in terms
of Moore families can be found in [19,20,21], as well as other characterizations
of ϕ−critical sets.

The Guigues-Duquenne basis [7] for positive Confidence-exact association
rules is the set BPE defined by

BPE = {X→ϕ(X) \ X : X is ϕ-critical}.

This basis has been adapted to Support-and-Confindence-exact association rules
by [22] and [23], who placed association rule mining problem within the theoretic
framework of Galois lattices.

Example 2. The rules B→E and D→AC are two rules belonging to BPE, from
which many other positive MGK-exact rules such as, for instance, BD→ACE,
AB→E and AD→ACE can be derived, using (PE1), (PE2) and (PE3).

The Luxenburger basis [8] for Confidence-approximate association rules is the
set LB defined by

LB = {X→Y : X = ϕ(X), Y = ϕ(Y ), X ≺ Y and Conf(X→Y ) ≥ α},

where X ≺ Y means that X ⊂ Y and there is no ϕ-closed set Z such that
X ⊂ Z ⊂ Y .

4 Bases for MGK-Valid Association Rules

In this section, we characterize a basis for (MGK, α)-valid association rules. This
basis is in fact the union of four bases: a basis for positive exact rules (i.e. the
rules X→Y such that MGK(X→Y ) = 1), a basis for negative exact rules (i.e. the
rules X→Y such that MGK(X→Y ) = 1), a basis for positive approximate rules
(i.e. the rules X→Y such that α ≤ MGK(X→Y ) < 1), and a basis for negative
approximate rules (i.e. the rules X→Y such that α ≤ MGK(X→Y ) < 1).
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4.1 Basis for Positive MGK-Exact Association Rules

The set of positive MGK-exact rules coincides with that of positive Confidence-
exact ones. Thus, the basis BPE for Confidence-exact association rules is by the
way a basis for positive MGK-exact rules.

4.2 Basis for Negative MGK-Exact Association Rules

Recall that negative association rules are rules of the form X→Y , where X and
Y are itemsets. The following straightforward but instrumental properties define
their support and confidence.

Proposition 3. Let X and Y be two itemsets. Then the three following condi-
tions hold.

(1) Supp(X) = 1 − Supp(X).
(2) Supp(X→Y ) = Supp(X) − Supp(X→Y ).
(3) Conf(X→Y ) = 1 − Conf(X→Y ).

Negative MGK-exact association rules are those negative rules X→Y such that
MGK(X→Y ) = 1. The next easily-checked result characterizes them in terms of
the support or the confidence of their corresponding positive rules.

Proposition 4. Let X and Y be two itemsets such that Supp(X) �= 0 and
Supp(Y ) �= 0. Then the following conditions are equivalent:

(1) MGK(X→Y ) = 1. (2) MGK(X→Y ) = −1.
(3) Conf(X→Y ) = 0. (4) Supp(X→Y ) = 0.

In the sequel, for x ∈ V and X, Y ⊆V, we will sometimes denote {x} by x, X ∪Y
by XY and {x} ∪ X by x + X . Proposition 4 leads us to consider the following
inference axioms for any itemsets X, Y, Z:

(NE1) X→Y and Supp(Y Z) > 0 imply X→Y Z;
(NE2) X→Y , Z ⊂ X and Supp(ZY ) = 0 imply Z→Y .

The next result shows that every association rule derived from negative MGK-
exact ones using (NE1) and (NE2) is also negative MGK-exact.

Proposition 5. The inference axioms (NE1) and (NE2) are sound for negative
MGK-exact association rules.

Proposition 4 also leads us to consider the positive border of the set of itemsets
having a null support [24], i.e., the set

Bd+(0) = {X⊆V : Supp(X) > 0and for all x /∈ X [Supp(x + X) = 0]}

consisting of maximal itemsets (w.r.t. set inclusion) having a non null support.
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Example 3. For the context given in Table 1, Bd+(0)={ACD, BCE, ABCE}.

We now go on to characterize the basis we propose for the set of negative MGK-
exact association rules.

Theorem 1. The set BNE defined by

BNE = {X→x : X ∈ Bd+(0) and x /∈ X}

is a basis for negative MGK-exact association rules w.r.t. the inference axioms
(NE1) and (NE2).

Example 4. For the context given in Table 1, BNE = {ABCE→D, ACD→B,
ACD→E, BCE→A, BCE→D}. Moreover, the eleven rules ABCE→D,
ABCE→AD, ABCE→CD, ABE→ACD, BE→AD, E→AD, B→AD,
E→CD, B→CD, E→ACD, B→ACD can be derived from the rule ABCE→D,
using (NE1) and (NE2).

It may be noticed that the positive border Bd+(0) is nothing else than the set
of maximal ϕ-closed itemsets having a strictly positive support. Thus, the basis
BNE is clearly characterized in terms of the closure operator ϕ. It may also be
noticed that Y →X is a negative MGK-exact rule whenever X→Y is. However
these two rules are not always equally informative. Indeed, if, for instance, |X1| >
|X2| > |Y1| > |Y2|, then the rule X2→Y2 is more informative than any other
negative rule involving the itemsets X1, X2, Y1, Y2.

4.3 Basis for Positive MGK-Approximate Association Rules

Positive (MGK, α)-approximate association rules are those positive rules X→Y
such that α ≤ MGK(X→Y ) < 1. The following straightforward result character-
izes them in terms of their confidence.

Proposition 6. Let X and Y be two itemsets such that X favors Y . Then
α ≤ MGK(X→Y ) < 1 if and only if Supp(Y )(1 − α) + α ≤ Conf(X→Y ) < 1.

This result leads us to consider the following inference axiom for any itemsets
X, Y, Z, T :

(PA) X→Y , ϕ(X) = ϕ(Z) and ϕ(Y ) = ϕ(T ) imply Z→T .

The two following technical lemmas will be helpful for proving the soundness of
the axiom (PA). The first lemma shows that every itemset has the same support
as its ϕ-closure [25].

Lemma 1. For any itemset X, Supp(ϕ(X)) = Supp(X).

The second lemma is a characterization of closure operators by means of path
independence property [26,21].

Lemma 2. An extensive function φ on a finite powerset, say P, is a closure
operator on P if and only if it satisfies the path independence property: φ(X ∪
Y ) = φ(φ(X) ∪ φ(Y )), for any X, Y ∈ P.
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The next proposition shows that every association rule derived from a positive
MGK-approximate one, using the inference axiom (PA), is also positive MGK-
approximate.

Proposition 7. The inference axiom (PA) is sound for positive (MGK, α)-
approximate association rules.

We now go on to characterize the basis we propose for the set of positive MGK-
approximate association rules.

Theorem 2. The set BPA(α) defined by

BPA(α)={X→Y : ϕ(X)=X, ϕ(Y )=Y, Supp(Y )(1−α)+α ≤ Conf(X→Y ) < 1}

is a basis for positive (MGK, α)-approximate association rules w.r.t. the inference
axiom (PA).

Example 5. Consider the context given in Table 1 and let the minimum validity
threshold α be set to 1

10 . Then, the rule AC→BCE is a member of BPA(α) from
which can be derived the five rules A→BC, A→CE, A→BCE, AC→BC and
AC→CE, using the inference axiom (PA).

4.4 Basis for Negative MGK-Approximate Association Rules

Negative (MGK, α)-approximate association rules are those negative rules X→Y
such that α ≤ MGK(X→Y ) < 1. The next straightforward result characterizes
them in terms of the confidence of their corresponding positive rules.

Proposition 8. Let X and Y be two itemsets such that X disfavors Y . Then
α ≤ MGK(X→Y ) < 1 if and only if 0 < Conf(X→Y ) ≤ Supp(Y )(1 − α).

This result leads us to consider the following inference axiom for any itemsets
X, Y, Z, T :

(NA) X→Y , ϕ(X) = ϕ(Z) and ϕ(Y ) = ϕ(T ) imply Z→T .

The next result shows the soundness of the inference axiom (NA).

Proposition 9. The inference axiom (NA) is sound for negative (MGK, α)-
approximate association rules.

Theorem 3 below characterizes the basis we propose for the set of negative MGK-
approximate association rules.

Theorem 3. The set BNA(α) defined by

BNA(α) = {X→Y : ϕ(X) = X, ϕ(Y ) = Y, 0 < Conf(X→Y ) ≤ Supp(Y )(1−α)}

is a basis for negative (MGK, α)-approximate association rules w.r.t. the inference
axiom (NA).

Example 6. Consider the context given in Table 1 and let the minimum validity
threshold α be set to 1

10 . Then, the rule AC→BE is a member of BNA(α) from
which can be derived the five rules A→B, A→E, A→BE, AC→B and AC→E,
using the inference axiom (NA).
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5 Conclusion

We reviewed the main properties of the quality measure for association rules,
MGK, independently introduced in [3] and in [4], and which has been shown to
be the normalized quality measure associated to most of the quality measures
proposed in the data mining literature [5]. On the other hand, we characterized
bases for MGK-valid association rules in terms of a closure operator induced by
a Galois connection [6]: two bases for positive rules (exact and approximate)
and two bases for negative rules (exact and approximate). Thus, these bases can
be derived from a Galois lattice, as do well known bases for Confidence-valid
association rules [7,8].
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Abstract. In knowledge mining, current trend is witnessing the emergence of
a growing number of works towards defining “concise and lossless” representa-
tions. One main motivation behind is: tagging a unified framework for drastically
reducing large sized sets of association rules. In this context, generic bases of as-
sociation rules – whose backbone is the conjunction of the concepts of minimal
generator (MG) and closed itemset (CI) – constituted so far irreducible com-
pact nuclei of association rules. However, the inherent absence of a unique MG
associated to a given CI offers an “ideal” gap towards a tougher redundancy re-
moval even from generic bases of association rules. In this paper, we adopt the
succinct system of minimal generators (SSMG), as newly redefined in [1], to
be an exact representation of the MG set. Then, we incorporate the SSMG into
the framework of generic bases to only maintain the succinct generic association
rules. After that, we give a thorough formal study of the related inference mech-
anisms allowing to derive all redundant association rules starting from succinct
ones. Finally, an experimental study shows that our approach makes it possible
to eliminate without information loss an important number of redundant generic
association rules and thus, to only present succinct and informative ones to users.

1 Introduction

As an important topic in data mining, association rule mining research [2] has pro-
gressed in various directions. Unfortunately, one problem with the current trend is that
it mainly favoured the efficient extraction of interesting itemsets regardless the effec-
tiveness of the mined knowledge. Indeed, by laying stress on the “algorithmic” improve-
ment of the frequent (closed) itemset extraction step, the current trend neglects user’s
needs: “concise with add-value knowledge”. Hence, the number of association rules,
which can be extracted even from small datasets, is always a real hampering towards
their effective exploitation by the users. Indeed, at the end of the extraction process,
the user is faced to an overwhelming quantity of association rules among which a large
number is redundant, what badly affects the quality of their interpretability. Neverthe-
less, some approaches have been devoted to the reduction of the number of association
rules such as generic bases [3,4,5,6,7,8], concise representations of frequent itemsets
[9,10,11], quality measures [12], user-defined templates or constraints [13,14]. Among
them, generic bases constitute an interesting starting point to reduce without loss of
information the size of the association rule set. Indeed, using the mathematical settings
of the Formal Concept Analysis (FCA) [15], generic bases were flagged as irreducible
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nuclei of association rules from which redundant ones can be derived without any loss
of information [3]. In this context, different works have shown that generic bases, con-
taining association rules whose implications are between minimal generators (MGs)
[3] and closed itemsets (CIs) [9], convey the maximum of information since they are
of minimal premises and of maximal conclusions [3,16]. For these reasons, such asso-
ciation rules are considered as the most informative ones [3].

Nevertheless, a recent study, proposed by Dong et al., showed that the MG set still
present a kind of redundancy [17]. Indeed, they consider the set of MGs associated to a
given CI by distinguishing two distinct types: succinct MGs and redundant ones. Thus,
Dong et al. introduce the succinct system of minimal generators (SSMG) as a concise
representation of the MG set. They state that redundant MGs can be withdrawn from
the MG set since they can straightforwardly be inferred, without loss of information,
using the knowledge gleaned from the succinct ones [17]. However, in [1], we showed
that the succinct MGs, as defined by Dong et al., prove not to be an exact representation
(no loss of information w.r.t. redundant MGs) in contrary to authors’ claims. We also
presented new definitions allowing to overcome the limitations of their work and, hence,
to make of the SSMG really an exact representation.

In this paper, we propose to incorporate the SSMG, as redefined in [1], into the
framework of generic bases to reduce as far as possible the redundancy within generic
association rules. Thus, after a study of the best known generic bases of association
rules, we apply the SSMG to the couple proposed by Bastide et al. [3]. This couple
presents at least two complementary advantages. On the one hand, association rules
composing it are of minimum premises and of maximal conclusions, and, hence, con-
vey the maximum of information [3,16]. On the other hand, this couple gathers the ideal
properties of an association rule representation since it is lossless, sound and informa-
tive [5]. We then study the obtained generic bases - once the SSMG is applied - to check
whether they are extracted without loss of information. Finally, an experimental evalua-
tion illustrates the potential of our approach towards offering to users a redundancy-free
set of generic association rules. Please note that it is out of the scope of this paper to
discuss how the succinct generic association rules are efficiently discovered.

The organization of the paper is as follows: Section 2 recalls some preliminary no-
tions that will be used in the remainder of the paper. We devote Section 3 to the pre-
sentation of the main definition of the SSMG proposed in [1]. Section 4 is dedicated to
the presentation of the succinct generic bases of association rules. In order to derive all
redundant association rules that can be extracted from a context, an axiomatic system
and a study of its main properties are also provided. In Section 5, several experiments
illustrate the utility of our approach followed by a summary of our contributions and
avenues for future work in Section 6.

2 Preliminary Notions

In this section, we present some notions that will be used in the following.

Definition 1. (EXTRACTION CONTEXT) An extraction context is a triplet K=(O, I, R),
where O represents a finite set of objects, I is a finite set of items and R is a binary
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(incidence) relation (i.e., R ⊆ O × I). Each couple (o, i) ∈ R indicates that the object
o ∈ O has the item i ∈ I.

Example 1. Consider the extraction context in Table 1 where O = {1, 2, 3, 4} and I =
{a, b, c, d, e, f, g}. The couple (4, b) ∈ R since it is crossed in the matrix1.

Table 1. An extraction context K

a b c d e f g
1 × × × × ×
2 × × × × ×
3 × × × × ×
4 × × × × × ×

For arbitrary sets I ⊆ I and O ⊆ O, the following derivation operators are defined
[18]: I ′ = {o ∈ O | ∀ i ∈ I , (o, i) ∈ R}, and, O′ = {i ∈ I | ∀ o ∈ O, (o, i) ∈ R}.
The composite operators ′′ define closures on (2I , ⊆) and (2O, ⊆). A pair (I , O), of
mutually corresponding subsets, i.e., I = O′ and O = I ′, is called a (formal) concept
[18], where I is the intent and O is the extent (e.g., (abcde, 24)2 is a concept from Table
1). Once applied, the corresponding operator ′′ induces an equivalence relation on the
power set of items 2I partitioning it into distinct subsets called equivalence classes
[19], which will further be denoted γ-equivalence classes. In each class, all itemsets
appear in the same set of objects and, hence, have the same closure. The largest element
(w.r.t. set inclusion) is called a closed itemset (CI) – the intent part of a formal concept
– while the minimal incomparable ones are called minimal generators (MGs). These
notions are defined as follows:

Definition 2. (CLOSED ITEMSET)[9] An itemset f ⊆ I is said to be closed if and only
if f ′′ = f .

Example 2. Given the extraction context depicted by Table 1, the itemset “cdeg” is a
closed itemset since it is the maximal set of items common to the set of objects {1, 4}.
The itemset “cdg” is not a closed itemset since all objects containing the itemset “cdg”
also contain the item “e”.

Definition 3. (MINIMAL GENERATOR)[3] An itemset g ⊆ I is said to be a minimal
generator of a closed itemset f if and only if g′′ = f and � g1 ⊂ g s.t. g′′

1
= f .

The set MGf of the MGs associated to an CI f is hence MGf = {g ⊆ I | g′′ = f ∧ �

g1 ⊂ g s.t. g′′
1

= f}.

Example 3. Consider the CI “cdeg” described by the previous example. “cdeg” has
“dg” as an MG. Indeed, (dg)′′ = cdeg and the closure of every subset of “dg” is different
from “cdeg”. Indeed, (∅)′′ = c, (d)′′ = cde and (g)′′ = cg. The CI “cdeg” has also another
MG which is “eg”. Hence, MGcdeg = {dg, eg}. “cdeg” is then the largest element of
its γ-equivalence class, whereas “dg” and “eg” are the minimal incomparable ones. All
these itemsets share the set of objects {1, 4}.

1 For the sake of homogeneity, we borrowed our running context from [1].
2 We use a separator-free form for the sets, e.g., the set abcde stands for {a, b, c, d, e}.
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Since in practice, we are mainly interested in itemsets that occur at least in a given
number of objects, we introduce the notion of support.

Definition 4. (SUPPORT) The support of an itemset I ⊆ I, denoted by Supp(I ), is
equal to the number of objects in K that have all items from I . I is said to be frequent in
K if Supp(I ) is greater than or equal to a minimum support threshold, denoted minsupp.

Example 4. Consider the itemset “cde” of the extraction context depicted by Table 1.
The objects 1, 2 and 4 contain the itemset “cde”. Hence, Supp(cde) = 3. If minsupp = 2,
then “cde” is frequent in K since Supp(cde) = 3 ≥ 2.

The frequent CIs can be structured as follows:

Definition 5. (ICEBERG LATTICE) Let FCIK be the set of frequent CIs extracted from
a context K. When the set FCIK is partially ordered with set inclusion, the result-
ing structure only preserves the Join operator [18]. This structure is called a join
semi-lattice or an upper semi-lattice [20], and is hereafter referred to as “Iceberg lat-
tice” [21].

Example 5. An example of an Iceberg lattice is shown in Figure 1.

 
 
 
 
 
 
 

 
(c, 4) 

(cg, 3) (cde, 3) (abc, 3) 

(cdeg, 2) (abcde, 2) (abcg, 2) (cfg, 2) 

Fig. 1. For minsupp = 2, the Iceberg lattice associated to the extraction context K given by
Table 1. Each one of its γ-equivalence classes contains a frequent CI f with its support

Each node (or equivalently, a frequent CI) in the Iceberg lattice has a set of nodes that
immediately cover it. This set is called upper cover and is formally defined as follows:

Definition 6. (UPPER COVER) The upper cover of a frequent CI f (denoted Covu(f ))
consists of the frequent CIs that immediately cover f in the Iceberg lattice. The set
Covu(f ) is given as follows: Covu(f ) = {f1 ∈ FCIK | f ⊂ f1 ∧ � f2 ∈ FCIK s.t. f
⊂ f2 ⊂ f1}.

Example 6. Let us consider the frequent CI “c” of the Iceberg lattice depicted by Figure
1. Covu(c) = {abc, cde, cg}.

3 Succinct System of Minimal Generators

In this section, we briefly describe the main structural properties of the succinct system
of minimal generators (SSMG) newly redefined in [1] to make of it an exact represen-
tation of the minimal generator (MG) set.
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The set MGf of the MGs associated to a given closed itemset (CI) f can be divided
into different equivalence classes thanks to a substitution process. To avoid confusion
with the γ-equivalence classes induced by the closure operator ′′, the substitution-based
ones will be denoted σ-equivalence classes. The substitution process uses an operator
denoted Subst. This substitution operator is a partial one allowing to substitute a subset
of an itemset X , say Y , by another itemset Z belonging to the same γ-equivalence class
of Y (i.e., Y ′′ = Z ′′). This operator is then defined as follows:

Definition 7. (SUBSTITUTION OPERATOR) Let X , Y and Z be three itemsets s.t. Y
⊂ X and Y ′′ = Z ′′. The substitution operator Subst, w.r.t. X , Y and Z , is defined as
follows: Subst (X , Y , Z) = (X\Y )

⋃
Z .

It is shown in [1] that X and Subst (X , Y , Z ) have the same closure.
For each γ-equivalence class C (or equivalently, for each CI f ), the substitution

operator induces an equivalence relation on the set MGf of the MGs of f portioning it
into distinct σ-equivalence classes. The definition of a σ-equivalence class requires that
we define the notion of redundant MG under the substitution process point of view as
follows:

Definition 8. (MINIMAL GENERATORS’ REDUNDANCY) Let g and g1 be two MGs
belonging to the same γ-equivalence class.

• g is said to be a direct redundant (resp. derivable) with respect to (resp. from) g1 ,
denoted g1 	 g, if Subst (g1 , g2 , g3 ) = g where g2 ⊂ g1 and g3 ∈ MGK s.t. g′′

3
= g′′

2
.

• g is said to be a transitive redundant with respect to g1 , denoted g1 	+ g, if it
exists a sequence of n MGs (n ≥ 2), gen1 , gen2 , . . ., gen

n
, s.t. geni 	 gen

i+1 (i ∈
[1..(n-1)]) where gen1 = g1 and gen

n
= g.

Proposition 1. The substitution relations 	 and 	+ have the following properties:
• The substitution relation 	 is reflexive, symmetric but not necessarily transitive.
• The substitution relation 	+ is reflexive, symmetric and transitive.

The definition of a succinct minimal generator that we give hereafter requires that we
adopt a total order relation among itemsets defined as follows:

Definition 9. (TOTAL ORDER RELATION) Let 
 be a total order relation among item
literals, i.e., ∀ i1 , i2 ∈ I, we have either i1 
 i2 or i2 
 i1 . This relation is extended
to also cope with itemsets of different sizes by first considering their cardinality. This is
done as follows: Let X and Y be two itemsets and let Card(X ) and Card(Y ) be their
respective cardinalities. We then have:

– If Card(X ) < Card(Y ), then X ≺ Y .
– If Card(X ) = Card(Y ), then X and Y are compared using their lexicographic

order. Hence, X ≺ Y if and only if X 
 Y and X �= Y .

Example 7. Consider the alphabetic order on items as the basis for the total order rela-
tion 
 on itemsets3:

3 In the remainder of the paper, we will only mention the criterion used to order items (e.g.,
alphabetic order, ascending/descending support order, etc). The latter is then extended to be
the total order relation on itemsets, as shown in Definition 9.
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- Since Card(d) < Card(be), then d ≺ be.
- Since Card(abd) = Card(abe), then abd and abe are compared using their lexico-

graphic order. We then have abd ≺ abe since abd 
 abe and abd �= abe.

The formal definition of a σ-equivalence class is then as follows:

Definition 10. (σ-EQUIVALENCE CLASS) The operator 	+ induces an equivalence
relation on the set MGf , of the MGs associated to an CI f , portioning it into distinct
subsets called σ-equivalence classes. If g ∈ MGf , then the σ-equivalence class of g,
denoted by [g], is the subset of MGf consisting of all elements that are transitively
redundant w.r.t. g. In other words, we have: [g] = {g1 ∈ MGf | g 	+ g1}.

The smallest MG in each σ-equivalence class, w.r.t. the total order relation 
, will
be considered as its succinct MG. While, the other MGs will be qualified as redundant
MGs.

Example 8. Let us consider the extraction context K depicted by Table 1. The total or-
der relation 
 is set to the alphabetic order. Table 2 shows, for each CI, the following
information: its MGs, its succinct MGs and its support. The MG “adg” is a succinct
one, since it is the smallest MG, w.r.t. 
, among those of “abcdeg”. Indeed, when
extracting the first σ-equivalence class associated to “abcdeg”, the whole MG set asso-
ciated to “abcdeg” is considered. We then have: adg 
 aeg, adg 
 bdg and adg 
 beg.
The MG “aeg” is a redundant one since Subst (adg, ad, ae) = aeg ∈ MGabcdeg (adg 	
aeg and, hence, adg 	+ aeg). It is the same for the MGs “bdg” and “beg” since adg 	+

bdg and adg 	+ beg.

Table 2. The CIs extracted from K and for each one, the corresponding MGs, succinct MGs and
support

# CI MGs Succinct MGs Support

1 c ∅ ∅ 4
2 abc a, b a, b 3
3 cde d, e d, e 3
4 cg g g 3
5 cfg f f 2
6 abcde ad, ae, bd, be ad 2
7 abcg ag, bg ag 2
8 abcfg af, bf af 1
9 cdeg dg, eg dg 2
10 cdefg df, ef df 1
11 abcdeg adg, aeg, bdg, beg adg 1

The succinct system of minimal generators (SSMG) is then defined as follows:

Definition 11. [1] (SUCCINCT SYSTEM OF MINIMAL GENERATORS) A succinct sys-
tem of minimal generators (SSMG) is a system where only succinct MGs are retained
among all MGs associated to each CI.
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Proposition 2. [1] The SSMG is an exact representation of the MG set.

In the remainder, the set of succinct (resp. redundant) frequent MGs that can be ex-
tracted from a context K will be denoted FMGsucK (resp. FMGredK).

4 Succinct and Informative Association Rules

We now put the focus on integrating the concept of succinct system of minimal genera-
tors (SSMG) within the generic association rule framework. Our purpose is to obtain,
without information loss, a more compact set of all association rules, from which the
remaining redundant ones can be generated if desired.

4.1 Association Rules: Some Basic Notations

The formalization of the association rule extraction problem was introduced by Agrawal
et al. [22]. The derivation of association rules is achieved starting from a set of frequent
itemsets [23] extracted from a context K (denoted FIK), for a minimal support thresh-
old minsupp. An association rule R is a relation between itemsets and is of the form R:
X ⇒ (Y \X ), such that X and Y are frequent itemsets, and X ⊂ Y . The itemsets X
and (Y \X ) are, respectively, called the premise and the conclusion of the association
rule R (also called antecedent and consequent of R [3], and condition and consequence
of R [16]). The support of R, Supp(R), is equal to Supp(Y ). R is said to be valid (or
strong) if its confidence measure, Conf (R) = Supp(Y )

Supp(X) , is greater than or equal to a min-
imal threshold of confidence denoted minconf. If Conf (R) = 1, then R is called exact
association rule, otherwise it is called approximate association rule. Please note that
the confidence of R is always greater than or equal to its frequency (i.e., Conf (R) ≥
Supp(R)

|O| ).

4.2 Extraction of Succinct and Informative Association Rules

The problem of the relevance and the usefulness of association rules is of paramount im-
portance. Indeed, an overwhelming quantity of association rules can be extracted even
from small real-life datasets, among which a large number is redundant (i.e., conveying
the same information) [4,6]. This fact boosted the interest in novel approaches aiming
to reduce this large association rule list, while preserving the most interesting rules.
These approaches are mainly based on the battery of results provided by the Formal
Concept Analysis (FCA) mathematical settings [15]. Thus, they focused on extracting
irreducible nuclei of all association rules, commonly referred to as “generic bases”,
from which the remaining redundant association rules can be derived. Definition 12 de-
scribes the properties that characterize a generic basis once it is extracted without loss
of information.

Definition 12. A generic basis B, associated with an appropriate inference mechanism,
is said to fulfill the ideal properties of an association rule representation if it is [5]:
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1. lossless: B must enable the derivation of all valid association rules,
2. sound: B must forbid the derivation of association rules that are not valid, and,
3. informative: B must allow to exactly retrieve the support and confidence values of

each derived association rule.

The generic basis B is said to verify the property of derivability if it is lossless and
sound.

The majority of the generic bases that were proposed in the literature convey association
rules presenting implications between minimal generators (MGs) and closed itemsets
(CIs) [3,5,7]. Indeed, it was proven that such association rules, with minimal premises
and maximal conclusions, convey the maximum of information [3,16] and are hence
qualified as the most informative association rules [3]. Furthermore, succinct MGs are
very well suited for such association rules, since they offer the minimal possible premises.
Indeed, they are the smallest ones in their respective σ-equivalence classes. They are also
the most interesting ones since correlations in each succinct MG can not be predicted
given correlations of its subsets and those of the other (redundant) MGs.

Hence, in order to extract much more compact sets of association rules, we propose
to integrate the concept of the succinct system of minimal generators (SSMG) within
the framework of generic bases. Although, our approach can be applied to different
generic bases, we concentrate our presentation on the couple (GB, RI ) proposed by
Bastide et al. [3]. Indeed, in addition to the quality of the conveyed knowledge, the
selected couple has the advantage to fulfill the ideal association rule representation’s
properties (summarized by Definition 12) in comparison to other generic bases (like
the couple (GDB, LB) [4], RR [5], NRR [6], etc4) [5]. Moreover, as this will be
shown in the remainder, these properties are still maintained after the application of the
SSMG which ensures the derivation of all redundant association rules without loss of
information. Unfortunately, this is not the case for the informative generic basis IGB
[7]. Indeed, even if it was proven in [7] that IGB also fulfills the ideal properties of an
association rule representation, the obtained generic basis, once the SSMG is applied to
IGB, is with information loss because some succinct MGs can sometimes be missing
(w.r.t. the definition of IGB, see [7]). Finally, the couple (GB, RI ) offers quite inter-
esting compactness rates (vs. the whole set of association rules) when compared to the
remaining representations of association rules.

The couple (SGB, SRI ) of succinct generic bases of association rules is defined as
follows5:

Definition 13. (THE SUCCINCT GENERIC BASIS (SGB) FOR EXACT ASSOCIATION

RULES) Let FCIK be the set of frequent CIs extracted from a context K. For each
entry f in FCIK, let FMGsucf be the set of its succinct frequent MGs. The succinct
generic basis for exact association rules SGB is given by: SGB = {R: g ⇒ (f\g) | f
∈ FCIK ∧ g ∈ FMGsucf ∧ g �= f 6}.

4 GDB (resp. LB, RR, and NRR) stands for Guigues-Duquenne Basis [4] (resp. Luxenburger
Basis [4], Representative Rules [5], and Non-Redundant Rules [6]).

5 The definition of the couple (GB, RI ) can be derived from that of the couple (SGB, SRI)
by considering all MGs instead of only succinct ones.

6 The condition g �= f ensures discarding non-informative association rules of the form g ⇒ ∅.
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Definition 14. (THE SUCCINCT TRANSITIVE REDUCTION (SRI ) FOR APPROXIMATE

ASSOCIATION RULES) Let FMGsucK be the set of the succinct frequent MGs ex-
tracted from a context K. The succinct transitive reduction SRI is given by: SRI =
{R: g ⇒ (f\g) | f ∈ FCIK ∧ g ∈ FMGsucK ∧ f ∈ Covu(f1 ) where f1 = g′′ ∧
Conf (R) = Supp(f )

Supp(g) ≥ minconf}.

Example 9. Consider the extraction context K given by Table 1 for a minsupp value
equal to 1. The alphabetic order relation is used as a total one. The associated Ice-
berg concept lattice is depicted by Figure 2 (Left). A succinct exact generic rule is an
“intra-node” association, with a confidence value equal to 1, within a γ-equivalence
class of the Iceberg concept lattice. The use of the SSMG allows, for example, to only
extract the succinct exact generic association rule adg ⇒ bce from the γ-equivalence
class having “abcdeg” for frequent CI, instead of four if redundant frequent MGs were
of use (as indicated by the last entry in Table 2). A succinct approximate generic rule
represents an “inter-node” association, assorted with a confidence measure, between a
γ-equivalence class and another one belonging to its upper cover. For example, for min-

conf = 0.40, only the association rule ad
0.50⇒ bceg is extracted from both γ-equivalence

classes having, respectively, “abcde” and “abcdeg” for frequent CI instead of four if
redundant frequent MGs were of use (as indicated by the seventh entry in Table 2).
The complete set of succinct generic association rules, extracted from K, is reported in
Figure 2 (Right). The cardinality of SGB (resp. GB) is equal to 13 (resp. 23), while
that of SRI (resp. RI ) is equal to 21 (resp. 28). Hence, thanks to the SSMG, we are
able to discard 43.48% (resp. 25.00%) of the exact (resp. approximate) generic as-
sociation rules since they are redundant. It is important to mention that the total number
of association rules, which can be retrieved from K, is equal to 943.

Remark 1. It is worth noting that in [24], the authors baptized succinct association rules
those obtained using a pruning strategy based on a model called maximal potentially
useful (MaxPUF) association rules. However, such reduction is done with information
loss since the regeneration of the whole set of valid association rules is not ensured. It
is important to mention that this approach and ours can be easily combined towards a
more reduced set of association rules.

4.3 Derivation of Redundant Association Rules

In the following, we study the structural properties of the new generic bases introduced
in the previous subsection. The study requires checking the ideal properties of an asso-
ciation rule representation (see Definition 12). Since, it was shown in [5] that the couple
(GB, RI ) is extracted without loss of information, it is sufficient to show that it is pos-
sible to derive without loss of information all association rules that belong to the couple
(GB, RI) starting from the couple (SGB, SRI ). If so, all redundant association rules
can be derived from (SGB, SRI ).

Association rules belonging to the couple (SGB, SRI ) are implications between
succinct frequent minimal generators (MGs) and frequent closed itemsets (CIs).



Generic Association Rule Bases: Are They so Succinct? 207

∅∅∅∅

SGB

R
1
: ∅ ⇒ c R

2
: a ⇒ bc R

3
: b ⇒ ac

R
4
: d ⇒ ce R

5
: e ⇒ cd R

6
: g ⇒ c

R
7
: ad ⇒ bce R

8
: ag ⇒ bc R

9
: dg ⇒ ce

R
10

: f ⇒ cg R
11

: adg ⇒ bce R
12

: af ⇒ bcg

R
13

: df ⇒ ceg

SRI

R
1
: ∅

0.75
⇒ abc R

2
: ∅

0.75
⇒ cde R

3
: ∅

0.75
⇒ cg

R
4
: a

0.67
⇒ bcg R

5
: b

0.67
⇒ acg R

6
: a

0.67
⇒ bcde

R
7
: b

0.67
⇒ acde R

8
: d

0.67
⇒ abce R

9
: e

0.67
⇒ abcd

R
10

: d
0.67
⇒ ceg R

11
: e

0.67
⇒ cdg R

12
: g

0.67
⇒ abc

R
13

: g
0.67
⇒ cde R

14
: g

0.67
⇒ cf R

15
: ad

0.50
⇒

bceg

R
16

: ag
0.50
⇒

bcde

R
17

: ag
0.50
⇒ bcf R

18
: dg

0.50
⇒

abce

R
19

: dg
0.50
⇒ cef R

20
: f

0.50
⇒ abcg R

21
: f

0.50
⇒ cdeg

Fig. 2. (Left) For minsupp = 1, the Iceberg concept lattice associated to the extraction context K
of Table 1. Each one of its γ-equivalence classes contains a frequent CI f accompanied by the set
of its succinct frequent MGs FMGsucf and its support, in the form (FMGsucf : f , Supp(f )).
(Right) The complete set of succinct generic association rules extracted from K.

Hence, to derive the couple (GB, RI ), redundant frequent MGs need to be deduced
since they form the premises of redundant generic association rules, i.e., association
rules belonging to (GB, RI) and discarded from (SGB, SRI ). In order to derive all as-
sociation rules belonging to (GB, RI ), we propose a new axiom called the substitution
axiom. Thus, from each association rule R: X ⇒ (Y \X ) of (SGB, SRI ) where X ∈
FMGsucK and Y ∈ FCIK, we propose to derive, using the substitution axiom, the set
of redundant generic association rules given by: Red Gen Assoc RulesR: X ⇒ (Y \X) =
{R′: Z ⇒ (Y \Z) | Z ∈ FMGredK s.t. X 	+ Z}. The substitution axiom proceeds
according to the following steps:

Step 1: The set GB (resp. RI ) is firstly initialized to SGB (resp. SRI ).
Step 2: Association rules belonging to (GB, RI) are processed in an ascending order

of their respective sizes 7, i.e., that for an association rule R: X ⇒ (Y \X ) ∈ (GB,
RI ) where X ∈ FMGsucK and Y ∈ FCIK, the set of redundant generic asso-
ciation rules associated to each association rule R1 : X1 ⇒ (Y1\X1 ), s.t. X1 ⊂ X
and Y1 ⊂ Y , were already derived.
Step 2.1: For each association rule R: X ⇒ (Y \X ) ∈ GB, derive the set of redun-

dant generic association rules Red Gen Assoc RulesR = {R′: Z ⇒ (Y \Z) |
Z is the result of the substitution of a subset of X , say V , by T s.t. (R1 : V
⇒ (I\V ), R2 : T ⇒ (I\T )) ∈ GB where I ∈ FCIK and � Z1 ⊆ Z s.t. Z1 ⇒
(Y \Z1 ) ∈ GB}.

7 The size of an association rule X ⇒ Y is equal to the cardinality of X
�

Y .
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Step 2.2: For each association rule R: X ⇒ (Y \X ) ∈ RI , derive the set of redun-
dant generic association rules Red Gen Assoc RulesR = {R′: Z ⇒ (Y \Z) |
Z is the result of the substitution of a subset of X , say V , by T s.t. (R1 : V
⇒ (I\V ), R2 : T ⇒ (I\T )) ∈ GB where I ∈ FCIK and � Z1 ⊆ Z s.t. Z1 ⇒
(Y \Z1 ) ∈ RI}. �

It is worth noting that comparing Z to Z1 ensures discarding the case where a substi-
tution leads to an already existing association rule or to a one having a non-minimal
generator as a premise.

Example 10. From the association rule R: adg ⇒ bce belonging to SGB (cf. Figure 2
(Right)), we will show how to derive association rules belonging to GB which are re-
dundant w.r.t. R. Before that R is processed, all association rules whose respective sizes
are lower than that of R (i.e., lower than 6) were handled and redundant generic asso-
ciation rules were derived from such association rules. Among the handled association
rules, we find those having for premises the 2-subsets of “adg”, i.e., ad ⇒ bce, ag ⇒
bc and dg ⇒ ce. To derive the redundant generic association rules associated to R, the
first 2-subset of “adg”, i.e., “ad”, is replaced by the frequent MGs having its closure,
i.e., the redundant frequent MGs “ae”, “bd” and “be”. Indeed, generic association rules
using these latter as premises were already derived as redundant w.r.t. ad ⇒ bce. Hence,
we augment GB by the following association rules: aeg ⇒ bcd, bdg ⇒ ace and beg ⇒
acd. The same process is applied to the second subset of “adg”, i.e., “ag”. Neverthe-
less, the obtained association rule, namely bdg ⇒ ace, will not be added to GB. Indeed,
it already exists an association rule in GB such that Z1 ⇒ (abcdeg\Z1) and Z1 ⊆ abg
(Z1 being itself equal to “abg”). It is the same for the derived association rule using the
third subset “dg”, i.e., aeg ⇒ bcd (Z1 being equal to “aeg”).

Now, we prove that the substitution axiom allows the couple (SGB, SRI ) to be lossless
and sound. Then, we show that this couple is also informative.

Proposition 3. The couple (SGB, SRI ) of generic bases is lossless: ∀ R: X⇒(Y \X )
∈ (SGB, SRI ), the set Red Gen Assoc RulesR={R′: Z ⇒ (Y \Z) | Z ∈ FMGredK
s.t. X 	+ Z} of the redundant generic association rules with respect to R, is completely
derived thanks to the proposed substitution axiom.

Proof. The sorting imposed in Step 2 ensures that, before R is processed, all associa-
tion rules whose respective sizes are lower than that of R were handled, and redundant
generic association rules were then derived from such association rules. Hence, all
information required to derive association rules belonging to Red Gen Assoc RulesR

are gathered thanks to the different sets Red Gen Assoc RulesR1 : X1 ⇒ (Y1\X1 ) such
that X1 ∈ FMGsucK, Y1 ∈ FCIK and Y1 ⊂ Y . Indeed, using these sets, all re-
dundant frequent MGs, with respect to X , are straightforwardly derivable since, for
each subset X1 of X , the different frequent MGs belonging to its γ-equivalence class
are already known as they are the premises of association rules belonging to the sets
Red Gen Assoc RulesR1

defined above. Hence, all association rules belonging to
(GB, RI ) can be deduced from (SGB, SRI ) using the substitution axiom. Therefore,
the couple (SGB, SRI ) is lossless. �
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Proposition 4. The couple (SGB, SRI ) of generic bases is sound: ∀ R′: Z ⇒ (Y \Z)
∈ Red Gen -Assoc RulesR: X ⇒ (Y \X) , Supp(R′)=Supp(R) and Conf (R′)= Conf (R).

Proof. On the one hand, Supp(R) is equal to Supp(Y ). It is the same for Supp(R′).
Hence, Supp(R′) = Supp(R). On the other hand, X and Z are two frequent MGs
belonging to the same γ-equivalence class. Hence, Supp(X ) is equal to Supp(Z ). Thus,
Conf (R′) = Supp(Y )

Supp(Z) = Supp(Y )
Supp(X) = Conf (R). Therefore, the couple (SGB, SRI ) is

sound. �

The property of derivability is fulfilled by the couple (SGB, SRI ) of generic bases
since it is lossless and sound. Now, we show that this couple allows the retrieval of the
exact values of the support and the confidence associated to each derived association
rule.

Proposition 5. The couple (SGB, SRI ) of generic bases is informative: the support
and the confidence of all derived association rules can exactly be retrieved from (SGB,
SRI ).

Proof. Association rules belonging to the couple (SGB, SRI ) are of the following
form: g ⇒ (f\g) where g ∈ FMGsucK and f ∈ FCIK. Therefore, we are able to
reconstitute all necessary frequent CIs by concatenation of the premise and the conclu-
sion parts of the generic association rules belonging to (SGB, SRI ). Since the support
of a frequent itemset I is equal to the support of the smallest frequent CI containing it
[9], then the support of I and its closure can be straightforwardly derived from (SGB,
SRI ). Hence, the support and the confidence values of all redundant association rules
can exactly be retrieved. Thus, the couple (SGB, SRI ) is informative. �

The substitution axiom is proved to be lossless, sound and informative; allowing to
derive all association rules forming (GB, RI ) as well as their exact support and con-
fidence values. Since the couple (GB, RI ) is shown to be extracted without loss of
information [5], we can deduce that the couple (SGB, SRI ) is also extracted without
information loss. In order to find the complete set of valid redundant association rules
that can be extracted from a context K, the axiom of transitivity proposed by Luxen-
burger [25] should be applied to the RI basis to derive association rules forming the
informative basis IB for the approximate association rules [3]. Then, the cover opera-
tor proposed by Kryszkiewicz [5] or the lossless and sound axiomatic system proposed
by Ben Yahia and Mephu Nguifo [26] makes it possible to derive all valid redundant
association rules starting from the couple (GB, IB). The complete process allowing to
derive all valid (redundant) association rules (denoted AR), starting from the couple
(SGB, SRI ), is hence as follows:

(SGB, SRI)
substitution axiom
− − − − − −→ (GB, RI )

transitivity axiom
− − − − − −→ (GB, IB)

cover operator or Ben Y ahia and Mephu Nguifo axiomatic system
− − − − − − − − − − − − − − −− −→ AR



210 T. Hamrouni, S. Ben Yahia, and E. Mephu Nguifo

5 Experimental Study

We carried out experimentations on benchmark datasets8 in order to evaluate the num-
ber of (succinct) generic association rules. Characteristics of these datasets are summa-
rized by Table 3. Hereafter, we use a logarithmically scaled ordinate axis in all figures.

Table 3. Dataset characteristics

Dataset Number of items Number of objects Average object size minsupp interval (%)

PUMSB 7, 117 49, 046 74.00 90 - 60

MUSHROOM 119 8, 124 23.00 1 - 0.01

CONNECT 129 67, 557 43.00 90 - 50

T40I10D100K 1, 000 100, 000 39.61 10 - 1

We compared both couples (SGB, SRI ) and (GB, RI) using the couple size as
evaluation criterion, for a fixed minsupp value. Indeed, this was carried out for the
PUMSB (resp. CONNECT, MUSHROOM and T40I10D100K) dataset for a minsupp
value equal to 70% (resp. 50%, 0.01% and 1%). Obtained results are graphically
sketched by Figure 3. For each dataset, the minconf value varies between the aforemen-
tioned minsupp value and 100%.

Figure 3 points out that removing redundancy within the frequent MG set9 offers an
interesting lossless reduction of the number of the extracted generic association rules.
Indeed, the use of the SSMG allows to remove in average 63.03% (resp. 49.46%) of
the redundant generic association rules extracted from the PUMSB (resp. MUSHROOM)
dataset. The maximum rate of redundancy reaches 68.11% (resp. 53.84%) for the
PUMSB (resp. MUSHROOM) dataset, for a minconf value equal to 100% (resp. 20%).
For the CONNECT and T40I10D100K datasets, the respective curves representing the
size of the couple (SGB, SRI ) and those representing the size of the couple (GB, RI )
are strictly overlapping. Indeed, these two datasets do not generate redundant frequent
MGs and, hence, there are no redundant generic association rules. Furthermore, for the
T40I10D100K dataset, none exact association rule is generated since each frequent
MG is equal to its closure.

We also set the minconf value to 0% to evaluate the reduction rate within valid exact
generic association rules (i.e., the generic basis GB) compared to that within approx-
imate ones (i.e., the RI basis). In this context, Figure 4 shows that, for the PUMSB

dataset, in average 62.46% (resp. 49.11%) of the exact (resp. approximate) generic
association rules are redundant, and the maximum rate of redundancy reaches 68.46%
(resp. 62.65%) for a minsupp value equal to 65% (resp. 65%). For the MUSHROOM

dataset, in average 50.55% (resp. 52.65%) of the exact (resp. approximate) generic
association rules are redundant, and the maximum rate of redundancy reaches 53.23%
(resp. 57.86%) for a minsupp value equal to 0.20% (resp. 0.10%).

8 These benchmark datasets are downloadable from: http://fimi.cs.helsinki.fi/data.
9 Interested readers are referred to [1] for more details.
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Fig. 3. For a fixed minsupp value, the size of the couple (GB, RI ) of generic bases compared to
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Fig. 4. For a fixed minconf value, the size of the generic basis GB (resp. RI ) compared to that
of the succinct generic basis SGB (resp. SRI)

These experiments clearly indicate that our approach can be advantageously used to
eliminate, without loss of information, a large number of redundant generic association
rules.

6 Conclusion and Future Work

In this paper, we briefly described the principal structural properties of the succinct sys-
tem of minimal generators (SSMG) redefined in [1]. We then incorporated it into the
framework of generic bases to tackle the problem of succinctness within generic asso-
ciation rule sets. Thus, we introduced two new succinct generic bases of association
rules, namely the couple (SGB, SRI ). We also showed that, starting from this couple,
it is possible to derive without loss of information all valid association rules belonging
to the couple (GB, RI ) thanks to the application of a new substitution process. Con-
sequently, any valid redundant association rule, which can be extracted from a context,
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can be inferred starting from the couple (SGB, SRI ). Finally, carried out experiments
confirmed that the application of the SSMG makes it possible to eliminate, as much
as possible, redundant generic association rules and, hence, to only offer succinct and
informative ones to users.

In the near future, from the viewpoint of the presentation and quality of knowledge,
we plan to set up an association rule visualization platform based on succinct generic
bases, which, in our opinion, will constitute a helpful tool for the users. In this setting,
integrating quality measures and user-defined constraints will be interesting for more
association rule pruning. In addition, we think that a careful study of the effect of the
total order relation choice, on the quality of the extracted succinct association rules ac-
cording to the data under consideration, presents an interesting issue towards increasing
the knowledge usefulness.
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2005. LNCS (LNAI), vol. 3488, pp. 121–130. Springer, Heidelberg (2005)

25. Luxenburger, M.: Implications partielles dans un contexte. Mathématiques, Informatique et
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Abstract. We show how the concept of an annotated ordered set can
be used to model large taxonomically structured ontologies such as the
Gene Ontology. By constructing a formal context consistent with a given
annotated ordered set, their concept lattice representations are derived.
We develop the fundamental mathematical relations present in this for-
mulation, in particular deriving a conceptual pre-ordering of the tax-
onomy, and constructing a correspondence between the annotations of
an ordered set and the closure systems of its filter lattice. We study an
example from the Gene Ontology to demonstrate how the introduced
technique can be utilized for ontology review.

1 Introduction

Ontologies, taxonomies, and other semantic hierarchies are increasingly nec-
essary for organizing large quantities of data, and recent years have seen the
emergence of new large taxonomically structured ontologies such as the Gene
Ontology (GO) [AsMBaC00]1, the UMLS Meta-Thesaurus [BoOMiJ02], object-
oriented typing hierarchies [KnTReJ00], and verb typing hierarchies in compu-
tational linguistics [DaA00a]. Cast as Directed Acyclic Graphs (DAGs), these all
entail canonical mathematical representations as annotated ordered sets (previ-
ously called “poset ontologies” [JM04]).

The size and complexity of these modern taxonomic hierachies requires al-
gorithmic treatement of tasks which could previously be done by hand or by
inspection. These include reviewing the consistency and completeness of the un-
derlying hierarchical structure, and the coherence of the labeling (the assignment
of objects to ontological categories). The close similarity of the annotated ordered
set representations of these taxonomies to concept lattices in Formal Concept
Analysis (FCA) [GW99] suggests pursuing their representation within FCA, in
order to gain a deeper understanding of their mathematical structure and opti-
mize their management and analytical tractibility (see also [JoCGeD06]).

We begin this paper by defining annotated ordered sets, and demonstrate
their appropriateness for representing the GO. Then, we define a formal con-
text appropriate for annotated ordered sets, and thereby construct their concept
1 http://www.geneontology.org

S. Ben Yahia et al. (Eds.): CLA 2006, LNAI 4923, pp. 214–225, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Concept Lattice Representations of Annotated Taxonomies 215

lattices. We analyze the relationship between an annotated ordered set and its
concept lattice representation, which includes the formulation of a correspon-
dence between the annotations of an ordered set and the closure systems of its
filter lattice. Additionally, we study an example from the GO. The paper is con-
cluded with a discussion of future applications and extensions of the outlined
approach. Throughout, we assume that the reader is knowledgable of the theory
of FCA [GW99].

2 Taxonomic Ontologies as Annotated Ordered Sets

We use the GO as our touchstone for the general concept of an annotated or-
dered set. Fig. 1 (from [AsMBaC00]) shows a sample portion of the GO. Nodes
in black represent functional categories of biological processes, basically things
that proteins “do”. Nodes are connected by links indicating subsumptive, “is-a”
relations between categories, so that, for example, “DNA ligation” is a kind of
“DNA repair”. Elsewhere in the GO, nodes can also be connected by compo-
sitional, “has-part” relations, but for our purposes, we will consider the GO as
singly-typed.

Fig. 1. A portion of the BP branch of the GO (used with permission from
[AsMBaC00]). GO nodes in the hierarchy have genes from three species annotated
below them.
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Colored terms attached to each node indicate particular proteins in particular
species which perform those functions. This assignment is called “annotation”.
Note that proteins can be annotated to multiple functions, for example yeast
MCM2 does both “DNA initiation” and “DNA unwinding”. Furthermore, an
annotation to a node should be considered a simultaneous annotation to all an-
cestor nodes, so that yeast CDC9 does both “DNA ligation” and “DNA repair”.
So explicit such annotations, for example CDC9 annotation to both “DNA liga-
tion” and “DNA recombination” in Fig. 1, are actually redundant. Finally, note
the presence of multiple inheritance: “DNA ligation” is both “DNA repair” and
“DNA recombination”.

It is therefore appropriate to model structures such as the GO as structures
called annotated ordered sets (previously referred to as poset ontologies [JM04]).

Definition 1 (Annotated Ordered Set). Let P := (P, ≤P) be a finite or-
dered set (poset), let X be a finite set of labels, and let F : X → 2P be an
annotation function. Then we call O := (P , X, F ) an annotated ordered set and
refer to (X, F ) as an annotation of P. In case P is a (complete) lattice we call
O an annotated (complete) lattice denoted L. If |F (x)| = 1 for all x ∈ X, for
convenience, we regard F as a map from X to P and say that O is elementary.

It should be emphasized that Fig. 1 shows only a small fragment of the GO,
which currently has on the order of 20,000 nodes in three disjoint taxonomies,
annotated by hundreds of thousands of proteins from dozens of species.

3 Concept Lattice Representations

We are now prepared to construct concept lattice representations of annotated
ordered sets by deriving the appropriate formal contexts. For an ordered set
P := (P, ≤P ) and node q ∈ P we denote by ↑ q := {p ∈ P | q ≤P p} the principal
filter of q and dually by ↓ q the principal ideal. In general, for Q ⊆ P we define
↑ Q := {p ∈ P | ∃q ∈ Q : q ≤P p} and dually ↓ Q. Given an annotated ordered
set O := (P , X, F ) we can construct a formal context KO := (X, P, I) where

xIp :⇐⇒↓ p ∩ F (x) �= ∅

for x ∈ X, p ∈ P . Note also that

xIp ⇐⇒ ∃q ≤P p : q ∈ F (x) ⇐⇒ p ∈
⋃

q∈F (x)

↑ q.

The concept lattice of KO will be denoted by B
O

:= (BO, ≤B
O
), where BO :=

B(KO) is the set of formal concepts of the formal context KO [GW99]. B
O

is
called the concept lattice representation of the annotated ordered set O.

In case O forms an annotated complete lattice and (A, B) ∈ BO is a formal
concept in BO, we observe that A = BI is the set of all x ∈ X such that

∧
B
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is an upper bound of F (x). Also, for convenience, for a node p ∈ P denote
pI := {p}I ⊆ X .

We can define a new relation on P induced by the concept lattice B
O
. We

say p is conceptually less or equal than q if and only if (pI , pII) ≤B
O

(qI , qII),
denoted by p ≤O q. We call ≤O the conceptual pre-order of O. In general, the
relation ≤O is not an order since for different p, q ∈ P the corresponding attribute
concepts (pI , pII) and (qI , qII) can match. Two annotations (X, F1), (X, F2) of
P are called annotationally equivalent if their conceptual pre-orders coincide. In
Sections 4, 5, and 6 we will explore the relationship between the original ordered
set P and the constructed conceptual pre-order (P, ≤O) and hint at potential
applications arising from this comparison.
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Fig. 2. Example of an annotated lattice

0 A B C D E F G H I J K 1

a × × × × × × ×
b × × × × ×
d × × ×
e × × × × ×
f × × ×
g × × ×
j × × × × × × ×

Fig. 3. Context for the annotated lattice in Fig. 2

Example 1. An example for an elementary annotated lattice L := (P , X, F ) is
given in Fig. 2 where P := ({A, B, . . . , K, 0, 1}, ≤P), X = {a, b, d, e, f, g, j}, and
F and ≤P are defined as illustrated. Fig. 3 shows the formal context KL,. and
Fig. 4 the resulting concept lattice B

O
.
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Fig. 4. Concept lattice representation of the annotated lattice in Fig 2

4 Mathematical Properties of Concept Lattice
Representations

In the first part of this section we will analyze how the order of the annotated
ordered set and the order of its concept lattice are related. In the second part
we will investigate how the concept lattice representations, derived from a given
ordered set using different annotations, can be classified.

4.1 Annotated Ordered Sets and Their Conceptual Pre-order

The following proposition connects an annotated ordered set with its concept
lattice representation.

Proposition 1. Let O := (P , X, F ) be an annotated ordered set and let μ : P →
BO be such that μ(p) = (pI , pII) maps each poset node to its attribute concept
in BO. Then μ constitutes an order-homomorphism between P and the concept
lattice representation of O.

Proof. Let p, q ∈ P . Then we have p ≤P q ⇐⇒↓ p ⊆↓ q which implies

pI = {x ∈ X | ↓ p ∩ F (x) �= ∅} ⊆ {x ∈ X | ↓ q ∩ F (x) �= ∅} = qI .

Since the last statement is equivalent to μ(p) ≤B
O

μ(q) this asserts the proposi-
tion. ��

By definition of ≤O, it follows that p ≤P q =⇒ p ≤O q. Clearly, the converse
is wrong, since in general ≤O is only a pre-order. Even for the factor order
associated with the pre-order, the converse implication does not hold as is verified
by the example shown in Figure 5, where c ≤O a, but c and a are non-comparable
in P .
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Fig. 5. Counter-example to μ inducing an order isomorphism

But for elementary annotated complete lattices we find the following connec-
tion which goes further than the results for annotated ordered sets.

Proposition 2. Let L = (P , X, F ) be an elementary annotated complete lattice.
The concept lattice of L is order-embedded into P via the map ϕ : BL → P where
(A, B) �→

∧
B.

Proof. For all c1, c2 ∈ BL, we have to show that c1 ≤B
L

c2 holds if and only if
ϕ(c1) ≤P ϕ(c2). Let c1 = (A, B) and c2 = (C, D) be concepts in BL.
“⇒”: Assume (A, B) ≤B

L
(C, D). This is equivalent to D ⊆ B which implies∧

B ≤P
∧

D.
“⇐”: Assume

∧
B ≤P

∧
D. Since L is elementary, BI is the set of all labels

x ∈ X such that
∧

B is an upper bound of F (x) it follows that BI ⊆ DI and
therefore we have (BI , B) ≤B

L
(DI , D) as required. ��

For elementary annotated lattices the previously introduced mappings μ and ϕ
combine in a surprising way.

Theorem 1. Let L := (P , X, F ) be an elementary annotated complete lattice.
Then (ϕ, μ) forms a residuated pair between the concept lattice representation
of L and P. In particular, ϕ is an injective

∨
-morphism and μ is a surjective∧

-morphism.

Proof. Firstly, we deduce from Proposition 2 that ϕ is injective. For residuated
pairs this implies the surjectivity of the second map. It remains to show that
(ϕ, μ) forms a residuated pair.

Since L is elementary, F can be regarded as a map from X to P and then the
incidence relation I of KL is defined via xIp if and only if F (x) ≤P p; therefore
xI =↑ F (x) for all x ∈ X . In the following let (A, B) be an arbitrary concept
in BL. We derive B = AI =

⋂
a∈A xI =

⋂
a∈A ↑ F (x) =↑

∨
F (A); hence, we

receive ϕ(A, B) =
∧

B =
∨

F (A). We conclude the proof as follows:

ϕ(A, B) ≤P p ⇐⇒
∨

F (A) ≤P p ⇐⇒ p ∈↑
∨

F (A) = AI

⇐⇒ A ⊆ pI ⇐⇒ (A, B) ≤B
L

μ(p)

��

As a consequence of our theorem we know that ϕ embeds the concept lattice
representation of an elementary annotated complete lattice into its underlying
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lattice as a kernel system. This fact applies to Example 1 and is visualized in
Fig. 6.

Though, in general, the concept lattice representations of elementary anno-
tated ordered sets cannot be embedded into their underlying ordered set, it is
feasible to embed them into a well-known extension of the former. For a subset
Q of an ordered set P , we will use the notation Q↓ for the set of all lower bounds
of Q in P .

Theorem 2. Let O := (P , X, F ) be an elementary annotated ordered set and
let K := (P, P, ≤P ). Then the map BO → B(K) with (A, B) �→ (B↓, B) forms
a

∨
-embedding of the concept lattice representation of O into the Dedekind-

MacNeille completion of P.

Proof. Firstly, we refer to Theorem 4 in [GW99], p.48, for details regarding the
Dedekind-MacNeille completion.

Since O is elementary, xI =↑ F (x) is an intent not only of KO but also
of K for every x ∈ X ; trivially, pI is an extent of KO for every p ∈ P . By
Definition 69 in [GW99], p. 185, this means that I is a bond from KO to K. Now
Corollary 112 in [GW99], p. 256, implies that the map ϕI from B

O
to B(K) with

ϕI(A, B) = (AI↓, AI) = (B↓, B) is a
∨

-morphism, which clearly is injective. ��
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Fig. 6. The concept lattice representation from Fig. 4 embedded as kernel system in
its annotated lattice from Fig. 2

4.2 Classifying the Annotations of an Ordered Set

We start with giving two rather extreme examples for different concept lattices
derived from the same ordered set via different annotations. In the following,
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it is more convenient to regard an annotated ordered set O := (P , X, F ) as a
formal context with an ordered set of attributes. Since the annotation function
F : X → 2P set-theoretically is a relation F ⊆ X × P , the formal context
(X, P, F ) together with the ordered set P = (P, ≤P) yields another way of look-
ing at an annotated ordered set. It is obvious, that the formal context KO is equal
to (X, P, F ◦ ≤P), where ◦ denotes the relational product. We recall Theorem
4 from [GW99] which states that for an ordered set P its Dedekind-MacNeille
completion is isomorphic to the concept lattice of the formal context (P, P, ≤P ).
Now it is easy to see, that the identical labelling function Fid : P → 2P with
p �→ {p} yields an annotated ordered set Oid := (P , P, Fid) which is isomorphic
to the Dedekind-MacNeille completion of P , because Fid ◦ ≤P=≤P which yields
KO = (P, P, ≤P ). On the other hand – as complicated as P might be – if the
labelling function is constant with FP (x) = P for any label x ∈ X we get a
formal context with I = X × P . That means, the concept lattice representation
shrinks the ordered set into a single element.

To get a more comprehensive description of the interplay of the annotations
of an ordered set P and its concept lattice representations we will use the filter
lattice of an ordered set P – which is defined as F(P) := ({F ⊆ P | ↑ F = F}, ⊆)
– as a framing structure.

Theorem 3. The annotations of an ordered set P = (P, ≤P) are, up to anno-
tational equivalence, in one-to-one correspondence to the closure systems in the
filter lattice of P.

Proof. Let x ∈ X be a label. The object intent xF◦≤P of x in (X, P, F◦ ≤P)
is of the form {p ∈ P | ∃q ∈ xF : q ≤P p} which is equal to the filter ↑ xF in
P . Since the intents of all concepts of a concept lattice are exactly the meets
of the object intents, the intents of the concepts of B(X, P, F◦ ≤P) are exactly
the meets of filters of the form xF◦≤P with x ∈ X , and therefore, form a closure
system in the filter lattice of P .

Let us assume that X ⊆ 2P is a closure system in the filter lattice of P .
We consider the formal context (X , P, �). For X ∈ X , we get X� = {p ∈
P | p ∈ X} = X . Therefore the intents of the associated concept lattice constitute
exactly the closure system X . And since in our situation � ◦ ≤P is equal to �,
an annotation (X , �) corresponding to X is found. ��

The above theorems say that the cosmos of possible structures which can be
produced via annotating an ordered set and forming its concept lattice are re-
stricted to closure systems in the filter lattice of the original ordered set – and
also exhaust them.

5 Application to the Gene Ontology

In this section we apply our proposed technique to the GO cutout depicted in
Figure 1. The given diagram can be seen as an annotated ordered set where the
underlying ordered set consists of the functional categories of biological processes



222 T.B. Kaiser, S.E. Schmidt, and C.A. Joslyn

(as e.g. DNA replication) and the order is given by the arrows. The set of labels
consists of the proteins and the annotation function maps a protein to a function
category if it is listed at the respective function category node. Clearly, this
annotated ordered set can not be interpreted as an annotated lattice, since infima
and suprema do not exist for any subset of nodes, e.g. the infimum over all
function categories is not present. Also the annotation function attaches some
proteins to several nodes as it is the case for Lig1 and Lig3 who are attached to
the functional categories of DNA ligation, DNA recombination, and DNA repair.
Figure 8 shows a diagram of the concept lattice representation of this annotated
ordered set where we have omitted function categories where there is no protein
attached to the nodes or to some subnode. Figure 7 shows the conceptual pre-
ordering of the functions derived from the concept lattice representation (in this
case it is an order).
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��������������

Fig. 7. Function categories ordered conceptually

We want to point out some interesting differences between the annotated
ordered set and its concept lattice. Conceptually, the function category DNA
Recombination is less than DNA Repair while in the GO the two nodes are not
comparable. This change occurs because DNA Repair “inherits” the proteins
from DNA Ligation which yields a superset of proteins annotated to DNA Repair
compared to DNA Recombination. Since the design of the function category
ordering of the GO differs from the conceptual pre-ordering the question arises
if some proteins exists but are not present in the GO which justify the non-
comparability or if the ordering should be redesigned.
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Fig. 8. Concept Lattice for the GO cutout depicted in Figure 1

If we focus our attention on the protein CDC9 we see that it is annotated
to two quite horizontally distinct nodes in the GO, Lagging strand elongation
and DNA ligation. In the concept lattice representation, the new object concept
node for CDC9 thus ties together these two GO nodes through the intermediate
concept shown there, the CDC9 object concept atom on the left. Now, we could
ask the question if there is a meaningful label for this node and if it should
eventually be introduced in the GO.
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6 Discussion

It should be noted that the formal properties of the GO are just now beginning
to be explored. Joslyn et al. [JM04] have done preliminary measurements of its
poset properties, including height, width, and ranks. And while we’ve noted that
the GO is not specifically lower-bounded, if a lower bound is asserted, then it can
be questioned how many pairs of nodes do not have unique meets and joins, and
thus how close it comes to our idealized annotated lattice. This is something we
have addressed specifically elsewhere [JoCGeD06], including proposing a method
to measure this degree of lattice-ness based on the FCA reconstruction of the
(un-annotated) GO.

As a main application area of our technique we see the task of ontology re-
view or refinement as insinuated in the last section. We want to emphasize two
aspects. Firstly, one can investigate all pairs of nodes which are not comparable
in the ontology but become comparable in the conceptual pre-order. Secondly,
one can consider concepts which are not attribute concepts in the concept lattice
representation. Those concepts might be considered as proposals for new nodes
in the ontology. This task could even be supported by software tools which could
automatically extract the conceptual pre-order of the nodes of the ontology and
compute all pairs of nodes which are not comparable in the ontology but become
comparable in the conceptual pre-order. The number of those nodes could be
interpreted as a degree of conceptual soundness of the ontology. Many additional
measures are possible, e.g. counting the number of concepts which are not at-
tribute concepts in the concept lattice representation, where this number could
be interpreted as conceptual completeness. In both cases lower numbers would
be considered as better results. We see future work in this line of research in
evolving measures and tools to make the technique operable for large ontologies
(see also [JoCGeD06]). This would involve the design of expert systems, which
support a semi-automated ontology review or reengineering process.
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1 IRISA/University of Rennes 1
2 IRISA/INSA,

Campus universitaire de Beaulieu, 35042 Rennes, France
firstname.lastname@irisa.fr
http://www.irisa.fr/LIS/

Abstract. Formal Concept Analysis (FCA) considers attributes as a
non-ordered set. This is appropriate when the data set is not structured.
When an attribute taxonomy exists, existing techniques produce a com-
pleted context with all attributes deduced from the taxonomy. Usual
algorithms can then be applied on the completed context for finding
frequent concepts, but the results systematically contain redundant in-
formation. This article describes an algorithm which allows the frequent
concepts of a formal context with taxonomy to be computed. It works
on a non-completed context and uses the taxonomy information when
needed. The results avoid the redundancy problem with equivalent per-
formance.

1 Introduction

Formal Concept Analysis (FCA) [GW99] finds interesting clusters, called con-
cepts, in data sets. FCA is based on a formal context, i.e. a binary relation
describing a set of objects by a set of properties (attributes). A formal concept
is defined by a pair (extent, intent), where extent is the maximal set of objects
that have in their description all attributes of intent, and intent is the maximal
set of attributes common to the description of all objects of extent. Searching
all concepts is, in general, costly and not always relevant. Thus some of these
algorithms search for frequent concepts. A concept is called frequent, with re-
spect to a threshold, if the cardinal of its extent is greater than the threshold.
Algorithms have been designed in order to find frequent concepts ([STB+02]).

FCA considers attributes as a non-ordered set. There are, however, numerous
cases where attribute taxonomies are genuinely available. For example, most cor-
pus of knowledge in natural science are organized in rich taxonomies. Conceptual
Scaling [GW99] can treat contexts with ordered attributes. A preprocessing step
produces a completed context where new attributes deduced from the taxon-
omy are included. Namely, let o be an object with initial attribute a, if in the
taxonomy a implies b, Conceptual Scaling adds attribute b to the description
of o. After the transformation, usual data mining algorithms can be applied on
the completed context for finding frequent concepts. However, the explicit links
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between initial attributes and deduced attributes are lost. As a consequence, the
resulting frequent concepts will systematically contain redundant information.
This might be a problem. For example, it is not always relevant to recall that
a nightingale is a Muscicapidae, order Passeriformes, class Aves, category Bird,
phylum Chordata, kingdom Animalia.

In this paper, we propose an algorithm for finding frequent concepts in a
context with taxonomy. The context needs not be completed, because the tax-
onomy is taken into account, when needed, during the computation. It is based
on Bordat’s algorithm which computes the concept lattice of a formal context
[Bor86].

The algorithm is implemented into LISFS [PR03], a file system based on
Logical Concept Analysis (LCA) [FR04], a version of FCA.

The contribution of this article is to describe, and experimentally validate,
an algorithm which allows frequent concepts of a formal context with taxonomy
to be computed. Thus, it is able to compute answers at the proper level of
abstraction with respect to the taxonomy, without redundancy in the resulting
frequent concepts.

In the following, Section 2 describes the algorithm. Section 3 gives experimen-
tal results. Section 4 concludes this paper.

2 Finding Frequent Concepts

Our algorithm is an adaptation of Bordat’s algorithm [Bor86, KO02]. The differ-
ences are: firstly the strategy to explore the concept lattice; secondly the under-
lying data structures, and most importantly, the possibility to use a taxonomy
to compute concepts.

The strategy of the method is top-down. The concept lattice is traversed by
first exploring one non-explored concept whose extent has the greatest cardinal.
The algorithm starts with the top concept. The taxonomy is taken into account,
when needed, during the computation.

In the following, we first present the data structures used by the algorithm,
then we give the details of the algorithm, its properties and we show the first 2
steps of computation on one example.

2.1 Data Structures

The algorithm manages 2 data structures: a set of computed frequent concepts
with respect to a threshold min sup, called solution, and a set of concepts to
explore called exploration.

Notation: given a concept c, extc (resp. intc) is the extent of c (resp. its
intent). Given an intent i (resp. an extent e), ext(i) is the extent of i (resp. the
intent of e).

Appart from the top concept, each concept s is computed from a concept g(s),
which we call the generator of s. That generator is such that there exists a set
of attributes, X , such that exts = extg(s) ∩ ext(X). We call X an increment of
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Algorithm 1. Frequent concepts
Require: K, a context with taxonomy; and min sup, a minimal support
Ensure: solution, a set of all concepts of K that are frequent with respect to min sup
1: solution := ∅
2: exploration.add((O → {roottax}, ∅, ∅)
3: while exploration �= ∅ do
4: let (exts → X, intg(s), incrg(s)) = maxext(exploration) in
5: ints := (intg(s) ∪tax X) ∪tax {y ∈ succ+

tax(X) | exts ⊆ ext({y})}
6: incrs := {(c → X) | ∃c′ : (c′ → X) ∈ incrg(s) ∧ c = exts ∩ c′ ∧ ‖c‖ ≥ min sup}
7: for all y ∈ succtax(X) do
8: let c = exts ∩ ext({y}) in
9: if ‖c‖ ≥ sup min then

10: incrs := incrs[c → (incrs(c) ∪ {y})]
11: end if
12: end for
13: for all (ext → Y ) in incrs do
14: exploration.add(ext → Y , ints, incrs)
15: end for
16: solution.add(exts, ints)
17: end while

g(s). A concept c may have several increments, but we are only interested in
increments that lead to different frequent immediate subconcepts of c. This is
approximated by a data structure incrc which contains at least all frequent im-
mediate subconcepts of c. In this data structure, every subconcept is associated
with its increment with respect to c. Thus, incrc is a mapping from subcon-
cepts to increments, and we write incrc[s → X ] to express that the mapping is
modified so that c maps to X .

An invariant for the correction of the algorithm is that

incrc ⊆ {(s → X) | exts = extc ∩ ext(X) ∧ ‖exts‖ ≥ min sup} .

All elements of incrc are frequent subconcepts of c.
An invariant for completness is that

extc ⊃ exts ∧ ‖exts‖ ≥ min sup ∧ ¬∃X : (s → X) ∈ incrc

=⇒ ∃s′ : extc ⊃ exts′ ⊃ exts ∧ ∃X : (s′ → X) ∈ incrc .

All frequent subconcepts of c that are not in incrc are subconcepts of a subcon-
cept of c which is in incrc.

Structure incrc avoids to test all attributes at each step. Indeed, the set of
increments is reducing when the lattice is explored top-down. Therefore, incrc

avoids to test a lot of irrelevant attributes, by storing relevant choice points from
the previous step in the computation. In practice, concepts are represented by
their extent, so that incrc is represented by a trie indexed by extents.
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Fig. 1. Concept lattice with-
out taxonomy

a cb

d e

root tax

Fig. 2. Taxonomy of
the example

Fig. 3. Completed concept
lattice

2.2 Algorithm

Algorithm Frequent concepts computes all frequent concepts, exploring the con-
cept lattice top-down. solution is initially empty (step 1). The top concept,
labelled by the root of the taxonomy (roottax), is put in exploration (step 2).
At each iteration of the while loop (step 3), an element of exploration with the
largest possible extent is selected: (exts → X, intg(s), incrg(s)) (step 4), where
(exts → X) is an element of incrg(s).

First, the intent of s is computed by completing (intg(s) ∪ X) (step 5) with
successors of X in the taxonomy. succtax(X) returns immediate successors of
attributes of X in the taxonomy and succ+

tax is the transitive closure. This is
here that the elimination of redundant attributes takes place, thanks to ∪tax.
∪tax is the union of two sets of attributes with elimination of redundancies due
to the taxonomy.

Second, the increments of s are computed by exploring the increments of g(s)
(step 6) and the successors of the attributes of X in the taxonomy (steps 7-10).
Indeed, the first are still possible increments for s. For each candidate increment,
the algorithm checks whether it actually leads to a frequent subconcept. Finally,
exploration (steps 13-14) and solution (step 16) are updated.

The context and the taxonomy of an example are given in Figure 1 and
Figure 2. Figure 3 shows the completed context, i.e. the explored lattice.

For this example, we assume min sup=3, and we give the first 2 steps of
computation. Initially, solution and exploration are:

– solution = ∅
– exploration = {((O → {roottax}), ∅, ∅)}.

First step: the top of the lattice is explored, i.e. s=c0. Increments of s are
computed from the taxonomy only, as there is no generator concept:

– incrc0 = { ({o3, o4, o7, o8, o9, o10} → {b}), ({o1, o2, o7, o8, o10} → {a}),
({o5, o6, o7, o9, o10} → {c})}

– solution = {c0}
– exploration = {(({o3, o4, o7, o8, o9, o10} → {b}), ∅, incrc0), (({o1, o2, o7,

o8, o10} → {a}), ∅, incrc0), (({o5, o6, o7, o9, o10} → {c}), ∅, incrc0)}.
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Second step: an element of exploration with the largest possible extent is
explored: s = c2, g(s) = c0. In order to compute incrc2 , we have to consider the
elements of incrc0 and the elements in the taxonomy.

– incrc2 = { ({o7, o8, o10} →{a}), ({o7, o9, o10}→{c, d}), ({o8, o10} → {e})}///////////////
– solution = {c0, c2}
– exploration = {( ({o1, o2, o7, o8, o10} → {a}), ∅, incrc0), (({o5, o6, o7,

o9, o10} → {c}), ∅, incrc0), (({o7, o9, o10} → {c,d}), {b}, incrc2), (({o7, o8,
o10} → {a}), {b}, incrc2)}.

In the second step, attributes d and e are introduced as successors of
attributes b, and attributes a and c are introduced as increments of c0, the
generator of c2.

Increment {e} is eliminated because it leads to an infrequent concept. At-
tributes c and d are grouped into a single increment because they lead to the
same subconcept. This ensures that computed intents are complete.

2.3 Properties

The algorithm has two properties: 1) it computes all frequent concepts; 2) all
intents of computed concepts are maximal and without redundancy according
to the taxonomy.

The first property is given by the fact that every frequent concept is a subcon-
cept of a frequent concept (except top) [PBTL99], and the concepts in explo-

ration are treated from the largest (with respect to the cardinal of the extent)
to the smallest.

The second property (the intent of a computed concept is without redun-
dancy), is given by the use of ∪tax which explicitly removes redundancy. In ad-
dition, when computing incrs, the increments from g(s) and from the taxonomy
which lead to the same concept are grouped together.

3 Experiments

The algorithm is implemented in the CAML language inside LISFS [PR03].
In LISFS, attributes can be ordered to create a taxonomy (for more details
see [PR03]). We ran experiments on an Intel(R)Pentium(R)M processor 2.00GHz
with Fedora Core release 4, 1GB of main memory.

We study a context with taxonomy about Java methods1. The context con-
tains 5 526 objects which are the methods of java.awt. They are described by
their input and output types, visibility modifiers, exceptions, keywords extracted
from their identifiers, and keywords from their comments. The context has 1 624
properties. Due to the class inheritance, the context has a natural hierarchy, i.e.
a taxonomy. There are 134 780 concepts but few of them are really frequent.
For this context, the execution time is proportional to the number of found con-
cepts. For example, with a threshold min sup of 5%, 189 frequent concepts are
1 Available on the web at http://lfs.irisa.fr/demo-area/awt-source/
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computed in 8s and taking into account the taxonomy to compute intent allows
to reduce 39% of irrelevant attributes.

In order to study the impact on the performance, of taking into account the
taxonomy, we test the method on a context without taxonomy, using the mush-
room benchmark2. The mushroom context has 8 416 objects and 127 different
properties. The computation time is similar to the results of the algorithms Close
and A-Close on the same data [Pas00], for example with a threshold min sup of
10%, 4 793 concepts are computed in 76s. This shows that in practice, taking
into account the taxonomy does not negatively impact the performance.

4 Conclusion

We have proposed an algorithm to compute all frequent concepts in a context
with taxonomy. The main advantage of the presented algorithm is to avoid redun-
dancies due to the taxonomy, in the intents of the computed frequent concepts.
The resulting concepts are therefore more relevant. Experiments have shown
that, in practice, taking a taxonomy into account does not negatively impact
the performance.
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Abstract. In the theory of generalised colourings of graphs, the Unique
Factorization Theorem (UFT) for additive induced-hereditary properties
of graphs provides an analogy of the well-known Fundamental Theorem
of Arithmetics. The purpose of this paper is to present a new, less com-
plicated, proof of this theorem that is based on Formal Concept Analysis.
The method of the proof can be successfully applied even for more gen-
eral mathematical structures known as relational structures.

1 Introduction and Motivation

Formal Concept Analysis (briefly FCA) is a theory of data analysis which iden-
tifies conceptual structures among data sets. It was introduced by R. Wille in
1982 and since then has grown rapidly (for a comprehensive overview see [12]).
The mathematical lattices that are used in FCA can be interpreted as classifica-
tion systems. Formalized classification systems can be analysed according to the
consistency of their relations. Some extensions and modifications of FCA can be
found e.g. in [16].

In this paper we provide a new proof of the Unique Factorization Theorem
(UFT) for induced-hereditary additive properties of graphs. The problem of
unique factorization of reducible hereditary properties of graphs into irreducible
factors was formulated as Problem 17.9 in the book [15] of T.R. Jensen and
B. Toft. Our proof is significantly shorter as the previous ones and it is based on
FCA. Moreover, FCA allows us to work with concepts instead of graphs and the
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reader can rather easily see that using this approach we can prove UFT even for
properties of more general structures like hypergraphs, coloured hypergraphs,
posets, etc. Such general mathematical object are very often called relational
structures.

In general, we follow standard graph terminology (see e.g. [1]). In particular,
we denote by N the set of positive integers and by Iω, I and Iconn the class of all
simple countable graphs, simple finite graphs and simple finite connected graphs,
respectively and Kn stands for the complete graph of order n. For a positive integer
k and a graph G, the notation k.G is used for the union of k vertex disjoint copies
of G. The join of graphs G, H is the graph obtained from the disjoint union G and
H by joining all vertices of G with all the vertices of H .

All our considerations can be done for arbitrary infinite graphs, however, in
order to avoid formal set-theoretical problems, we shall consider only countable
infinite graphs. Moreover, we assume that the vertex set V (G) of a graph G is a
subset of a given countable set, say U . A graph property P is any isomorphism-
closed nonempty subclass of Iω. It means that investigating graph properties,
in principle, we restrict our considerations to unlabeled graphs.

Let P1, P2, . . . , Pn be graph properties. A vertex (P1, P2, . . . , Pn)-colouring
(partition) of a graph G = (V, E) is a partition (V1, V2, . . . , Vn) of V (G) (every
pair of Vi’s has empty intersection and the union of Vi’s forms V ) such that each
colour class Vi induces a subgraph G[Vi] having property P i. For convenience, we
allow empty partition classes in the partition sequence. An empty class induces
the null graph K0 = (∅, ∅). If each of the Pi’s, i = 1, 2, . . . , n, is the property O
of being edgeless, we have the well-known proper vertex n-colouring. A graph
G which have a (P1, P2, . . . , Pn)-colouring is called (P1, P2, . . . , Pn)-colourable,
and in such a situation we say that G has property P1◦P2◦ · · · ◦Pn. For more
details concerning generalized graph colourings we refer the reader to [2,3,15].

In 1951, de Bruijn and Erdős proved that an infinite graph G is k-colourable if
and only if every finite subgraph of G is k-colourable. An analogous compactness
theorem for generalized colourings was proved in [7]. The key concept for the
Vertex Colouring Compactness Theorem of [7] is that of a property being of
finite character. Let P be a graph property, P is of finite character if a graph in
Iω has property P if and only if each its finite induced subgraph has property
P. It is easy to see that if P is of finite character and a graph has property
P then so does every induced subgraph. A property P is said to be induced-
hereditary if G ∈ P and H ≤ G implies H ∈ P , that is P is closed under taking
induced subgraphs. Thus properties of finite character are induced-hereditary.
However not all induced-hereditary properties are of finite character; for example
the graph property Q of not containing a vertex of infinite degree is induced-
hereditary but not of finite character. Let us also remark that every property
which is hereditary with respect to every subgraph (we say simply hereditary)
is induced-hereditary as well. The properties of being edgeless, of maximum
degree at most k, Kn-free, acyclic, complete, perfect, etc. are properties of finite
character. The compactness theorem for (P1, P2, . . . , Pn)-colourings, where the
Pi’s are of finite character, have been proved using Rado’s Selection Lemma.
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Theorem 1 (Vertex Colouring Compactness Theorem, [7]). Let G be a
graph in Iω and let P1, P2, . . . , Pn be properties of graphs of finite character.
Then G is (P1, P2, . . . , Pn)-colourable if every finite induced subgraph of G is
(P1, P2, . . . , Pn)-colourable.

Let us denote by R = P1◦P2◦ · · · ◦Pn, n ≥ 2 the set of all (P1, P2, . . . , Pn)-
colourable graphs. The binary operation ◦ is obviously commutative, associative
on the class of graph properties and Θ = {K0} is its neutral element. The
properties Θ, I and Iω are said to be trivial. A nontrivial graph property P is
said to be reducible if there exist nontrivial graph properties P1, P2, such that
P = P1◦P2; otherwise P is called irreducible. In what follows each property is
considered to be nontrivial.

The problem of unique factorization of a reducible induced-hereditary prop-
erty into induced-hereditary factors was introduced in connection with the study
of the existence of uniquely colourable graphs with respect to hereditary prop-
erties (see [2,3] and Problem 17.9. in the book [15]). In general, there are only
few graph properties that have a unique factorization into irreducible ones (see
[8,10]). However, for some important classes of graph properties the Unique Fac-
torization Theorems can be proved. In [19] it is proved that every reducible
property of finite graphs, which is closed under taking subgraphs and disjoint
union of graphs (such properties are called additive) is uniquely factorisable
into irreducible additive hereditary factors. An analogous result was obtained in
[10,17] for additive induced-hereditary properties of finite graphs. Following [2]
let us denote by M a the set of all additive induced-hereditary properties of finite
graphs. Then UFT can be stated as follows.

Theorem 2 (Unique Factorization Theorem - UFT, [10,17]). Every ad-
ditive induced-hereditary property of finite graphs is in M a uniquely factorisable
into a finite number of irreducible additive induced-hereditary properties, up to
the order of factors.

Let us remark, that using Theorem 1 we can prove UFT for the class M ωa

of the additive properties of infinite (countable) graphs of finite character (see
[13]). The proof of the Unique Factorization Theorem is rather complicated. The
problems concerning the proof were discussed from different points of view in
several papers [6,10,11,13,17] and in details in PhD thesis (see e.g. [8]). On the
other hand, the Theorem 2 has several deep applications related to the existence
of uniquely partitionable graphs (see [4,5]) and consequently the complexity of
generalized colourings. A. Farrugia in [9] proved that if P and Q are additive
induced-hereditary graph properties, then (P , Q)-colouring is NP-hard, with the
sole exception of graph 2-colouring (the case where both P and Q are the set O of
finite edgeless graphs). Moreover, (P , Q)-colouring is NP-complete if and only if
P- and Q-recognition are both in NP. It shows that additive induced-hereditary
properties are rather complicated mathematical structures.

The aim of this paper is to present a new method of the proof of the Unique
Factorization Theorem, which will eliminate some technical difficulties in the
previous proofs. Moreover it shows a new utilisation of the methods of FCA.
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2 Hereditary Graph Properties in the Language of FCA

It is quite easy to prove that the sets M a (M ωa) of all additive and induced-
hereditary graph properties of finite graphs (of finite character), partially ordered
by set inclusion, forms a complete distributive lattice. The lattices of heredi-
tary graph properties have been studied intensively, references may be found in
[2,14,18]. In this section we will present a new approach to the lattice of additive
induced-hereditary graph properties.

In order to proceed we need to introduce some concepts of FCA according to
a fundamental book of B. Ganter and R. Wille [12].

Definition 1. A formal context K := (O, M, I) consists of two sets O and M
and a relation I between O and M . The elements of O are called the objects
and the elements of M are called the attributes of the context.

For a set A ⊆ O of objects we define

A′ := {m ∈ M : gIm for all g ∈ A}.

Analogously, for a set B of attributes we define

B′ := {g ∈ O : gIm for all ∈ B}.

A formal concept of the context (O, M, I) is a pair (A, B) with A ⊆ O, B ⊆
M, A′ = B and B′ = A.

We call A the extent and B the intent of a concept (A, B). L(O, M, I)
denotes the set of all concepts of the context (O, M, I).

If (A1, B1) and (A2, B2) are concepts of a context and A1 ⊆ A2 (which is
equivalent to B2 ⊆ B1), we write (A1, B1) ≤ (A2, B2).

For an object g ∈ O we write g′ = {m ∈ M |gIm} and γg for the object
concept (g′′, g′), where g′′ = {{g}′}′.

Let us mention that, by the Basic Theorem on Concept Lattices, the set L(O, M, I)
of all concepts of the context (O, M, I) partially ordered by the relation ≤ (see
Definition 1) is a complete lattice.

Let us present additive induced-hereditary graph properties as concepts in
a given formal context. Using FCA we can proceed in the following way. Let
us define a context (O, M, I) by setting objects to countable simple graphs, e.g.
O = Iω. For each connected finite simple graph F ∈ I let us consider an attribute
mF : “do not contain an induced-subgraph isomorphic to F”. Thus GImF means
that the graph G does not contain any induced subgraph isomorphic to F . We
can immediately observe the following:

Lemma 1. Let O = Iω and M = {mF , F ∈ Iconn}. Then the concepts of
the context K = (O, M, I) are additive induced-hereditary graph properties of
finite character and the concept lattice (L(O, M, I), ≤) is isomorphic to the lattice
(M ωa, ⊆). Moreover, for each concept P = (A, B) there is an object - a countable
graph G ∈ O such that P = γG = (G′′, G′).
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Proof. It is easy to verify that the extent of any concept (A, B) of K forms
an additive induced-hereditary property P = A of finite character. Obviously,
each countable graph G = (V, E) in the context K leads to an “object concept”
γG = (G′′, G′). On the other hand, because of additivity, the disjoint union of
all finite graphs having a given additive induced-hereditary property P ∈ M ωa

is a countable infinite graph K satisfying γK = (P , Iconn − P). ��

In order to describe additive induced-hereditary properties of finite graphs,
mainly two different approaches were used: a characterization by generating
sets and/or by minimal forbidden subgraphs (see [2] and [11]). While the extent
A of a concept (A, B) ∈ L(O, M, I) is related to a graph property P , the intent
B consists of forbidden connected subgraphs of P . The set F (P) of minimal
forbidden subgraphs for P consists of minimal elements of the poset (B, ≤). For
a given countable graph G ∈ Iω let us denote by age(G) the class of all finite
graphs isomorphic to finite induced-subgraph of G (see e.g. [20]). Scheinerman
in [21] showed, that for each additive induced-hereditary property P of finite
graphs, there is an infinite countable graph G such that P = age(G). This result
corresponds to the proof of Lemma 1. On the other hand, it is worth to mention
that γG = (P , G′) does not imply, in general, that P = age(G). Let us define
a binary relation ∼= on Iω by G1

∼= G2 whenever γG1 = γG2 in the context K,
and we say that G1 is congruent with G2 with respect to K. Obviously, ∼= is an
equivalence relation on Iω. The aim of the next section is to find appropriate
representatives of congruence classes and to describe their properties.

3 Uniquely Decomposable Graphs

All the previous proofs of UFT are based on a construction of uniquely R-
decomposable graphs that are defined as follows.

Definition 2. For given (finite or infinite) graphs G1, G2, . . . , Gn, n ≥ 2, de-
note by G1 ∗ G2 ∗ · · · ∗ Gn the set of graphs

{
H ∈ Iω :

n⋃

i=1

Gi ⊆ H ⊆
n∑

i=1

Gi

}
,

where
⋃n

i=1 Gi denotes the disjoint union and
∑n

i=1 Gi the join of the graphs
G1, G2, . . . , Gn, respectively. For a graph G, s ≥ 2, s ∗ G stands for the class
G ∗ G ∗ · · · ∗ G, with s copies of G.

Let G be a graph and R be an additive induced-hereditary property of graphs.
Then we put decR(G) = max{n : there exist a partition {V1, V2, . . . , Vn}, Vi �=
∅, of V (G) such that for each k ≥ 1, k.G[V1] ∗ k.G[V2] ∗ · · · ∗ k.G[Vn] ⊆ R}. If
G �∈ R we set decR(G) to zero.

A graph G is said to be R-decomposable if decR(G) ≥ 2; otherwise G is
R-indecomposable.

A graph G ∈ P is called P-strict if G ∗ K1 �⊆ P. The class of all P-strict
graphs is denoted by S(P). Put dec(R) = min{decR(G) : G ∈ S(R)}.
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A R-strict graph G with decR(G) = dec(R) = n ≥ 2 is said to be uniquely
R-decomposable if there exists exactly one R-partition {V1, V2, . . . , Vn}, Vi �=
∅, such that for each k ≥ 1, k.G[V1] ∗ k.G[V2] ∗ · · · ∗ k.G[Vn] ⊆ R. We call the
graphs G[V1], G[V2], . . . , G[Vn] ind-parts of the uniquely decomposable graph G.

These notions are motivated by the following observation: Let us suppose that
G ∈ R = P◦Q and let (V1, V2) be a (P , Q)-partition of G. Then by additivity of
P and Q we have that k.G[V1] ∗ k.G[V2] ⊆ R for every positive integer k. Thus,
if the property R is reducible, every graph G ∈ R with at least two vertices is
R-decomposable.

We proved in [13,17] that for any reducible additive induced-hereditary prop-
erty also the converse assertion holds:

Theorem 3. An induced-hereditary additive property R is reducible if and only
if all graphs in R with at least two vertices are R-decomposable.

Remark that almost all graphs in R are R-strict and each graph G ∈ R is an
induced subgraph of a R-strict graph. To present our main result we need some
notions from [10]:

Definition 3. Let d0 = {U1, U2, . . . , Um} be a P-partition of a graph G ∈ P.
A P-partition d1 = {V1, V2, . . . , Vn} of G respects d0 if no Vi intersects two
or more Uj’s; that is each Vi is contained in some Uj. We say that the graph
G∗ ∈ s ∗ G respects d0 if G∗ ∈ s.G[U1] ∗ s.G[U2] ∗ · · · ∗ s.G[Um]. For a graph
G∗ ∈ s ∗ G, denote the copies of G by G1, G2, . . . , Gs. Then we say that a P-
partition d = {V1, V2, . . . , Vn} of G∗ respects d0 uniformly whenever for each
Vi there is a Uj such that for every Gk, Vi ∩ V (Gk) ⊆ Uj.

If G is uniquely R-decomposable, its ind-parts respect d0 if its unique R-partition
respects d0. If G∗ is uniquely R-decomposable, it ind-parts respect d0 uniformly
if for some s the graph G∗ ∈ s ∗ G respects d0 and the unique R-partition of G∗

respects d0 uniformly.
Based on the construction given in [17] A. Farrugia and R.B. Richter proved:

Theorem 4. ( [10,17]) Let G be an R-strict graph with decR(G) = dec(R) =
n ≥ 2 and let d0 = {U1, U2, . . . , Um} be a fixed R-partition of G. Then there is
a uniquely R-decomposable finite graph G∗ ∈ s ∗ G, for some s, that respects d0,
and moreover any R-partition of G∗ with n parts respects d0 uniformly.

Using Theorem 4 we can prove:

Theorem 5. Let R ∈ M ωa be a reducible graph property of finite character.
Then there exists a uniquely R-decomposable infinite countable graph H such
that γH = (R, H ′) and age(H) = R ∩ I.

Proof. Following E. Scheinerman [21], a composition sequence of a class P of finite
graphs is a sequence of finite graphs H1, H2, . . . , Hn, . . . such that Hi ∈ P , Hi <
Hi+1 for all i ∈ N and for all G ∈ P there exists a j such that G ≤ Gj . Accord-
ing to Theorem 4, we can easily find a composition sequence H1, H2, . . . , Hn, . . .
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of R ∩ I consisting of finite uniquely R-decomposable graphs. Without loss of
generality, we may assume that if i < j, i, j ∈ N, then V (Hi) ⊂ V (Hj). Let
V (H) =

⋃
i∈N V (Hi) and {u, v} ∈ E(H) if and only if {u, v} ∈ E(Hj) for some

j ∈ N. It is easy to see that age(H) = R ∩ I, implying γH = (R, H ′). Let us
remark that, according to the Theorem 1, H is R-decomposable if every finite in-
duced subgraph of H is R-decomposable. In order to verify, that H is uniquely
R-decomposable it is sufficient to verify that if {Vj1 , Vj2 , . . . , Vjn}, Vji �= ∅ is the
unique R-partition of Hj , j ∈ N, then {U1, U2, . . . , Un}, where Uk =

⋃
j∈N Vjk

,
k = 1, 2, . . . , n, is the unique R-partition of H . Indeed, this is because the exis-
tence of other R-partition of H would imply the existence of other partition of
some Hi and it provides a contradiction. ��

4 Unique Factorization Theorem for Properties of Finite
Character

In [13], based on Theorem 1 and Theorem 2 we proved:

Theorem 6. Every reducible additive property R of finite character is uniquely
factorisable into finite number of irreducible factors belonging to M ωa.

Here we present a new proof of the Theorem 6 based on the Theorem 5 in the
context K.

Proof. According to the Theorem 5, let H be a uniquely R-decomposable infinite
countable graph such that γH = (R, H ′) and let dH = {W1, W2, . . . , Wn} be
the unique R-partition of H . Let P i = γH [Wi] for i = 1, 2, . . . , n = dec(R).
Then obviously we have R = P1◦P2◦ · · · ◦Pn. If there would be some other
factorization of R into n irreducible factors then obviously H would have another
R-partition, which contradicts to the fact that H is uniquely R-decomposable.
Since dec(H) = dec(R) = n, there is no factorization of R into more then n
factors. Thus to prove that R = P1◦P2◦ · · · ◦Pn is the unique factorization of
R. Further, let R = Q1◦Q2◦ . . . ◦Qm, m < n and d0 = {U1, U2, . . . Um} be a
(Q1, Q2, . . . , Qm)-partition of H . Then, by Theorem 4, there is an s ∈ N such
that s∗H respects d0 uniformly. Thus, since m < n, there exists an index j such
that H [Uj] ∈ H [Wr] ∗ H [Ws], implying Qj is reducible. ��

5 Conclusion

By a careful examination of the previous considerations and arguments, it is not
very difficult to see, that for the presented method of the proof it is not impor-
tant that we are dealing with simple graphs. Indeed, without any substantial
change the presented proofs can be applied for directed graphs, hypergraphs or
partially ordered sets. All these mathematical objects are examples of so-called
relational structures. Thus we obtain a general UFT that is applicable for addi-
tive properties of finite character for different objects, with various applications
in computer science. For other details we refer the reader to [6].
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5. Broere, I., Bucko, J., Mihók, P.: Criteria for the existence of uniquely partitionable
graphs with respect to additive induced-hereditary properties. Discuss. Math. -
Graph Theory 22, 31–37 (2002)
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Abstract. We present an application of formal concept analysis aimed at repre-
senting a meaningful structure of knowledge communities in the form of a lattice-
based taxonomy. The taxonomy groups together agents (community members)
who interact and/or develop a set of notions—i.e. cognitive properties of group
members. In the absence of appropriate constraints on how it is built, a knowl-
edge community taxonomy is in danger of becoming extremely complex, and
thus difficult to comprehend. We consider two approaches to building a concise
representation that respects the underlying structural relationships, while hiding
uninteresting and/or superfluous information. The first is a pruning strategy that is
based on the notion of concept stability, and the second is a representational im-
provement based on nested line diagrams. We illustrate the method with a small
sample of a community of embryologists.

1 Introduction

A knowledge community is a group of agents who produce and exchange knowledge
within a given knowledge field, achieving a widespread social cognition task in a rather
decentralized, collectively interactive, and networked fashion. The study of such com-
munities is frequent topic in social epistemology as well as in scientometrics and polit-
ical science (refer, inter alia, to [1,2,3]).

In particular, a traditional concern relates to the description of the structure of knowl-
edge communities [4], generally organized in several subcommunities. In contrast to
the limited, subjective, and implicit representation that agents have of their own global
community—a folk taxonomy [5]—epistemologists typically use expert-made
taxonomies, which are somewhat more reliable but which still fall short in terms of
precision, objectivity, and comprehensiveness.

We describe here an application of formal concept analysis (FCA) aimed at rep-
resenting a meaningful structure of a given knowledge community in the form of a
lattice-based taxonomy which is built upon groups of agents who jointly manipulate
sets of notions. Formal concepts in this case relate loosely to the sociological idea of
“structural equivalence” [6].

This work is a development of the approach presented in [7,8], where it was shown
how to use FCA to identify the main fields in a scientific community and describe their
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taxonomy with several levels of detail. Section 2 gives an overview of the approach. In
section 3, we concentrate on how to make lattice-based taxonomies concise and intel-
ligible. Concept lattices faithfully represent all features of data, including those due to
noise. Therefore, we need tools that would allow us to abstract from insignificant and
noisy features. To this end, we suggest a pruning technique based on stability indices of
concepts [9] and apply it on its own and in combination with nested line diagrams [10].
The latter allows for representing the community structure at various levels of precision,
depending on which subcommunities are most interesting to the user of the taxonomy.
The techniques described in section 3 admit modifications, which are a subject for fur-
ther research and experiment. Some possible directions and open questions are listed in
section 4.

2 A Formal Concept Analysis Approach in Applied Epistemology

2.1 Framework

Representing taxonomies of knowledge communities has routinely been an issue for ap-
plied epistemology and scientometrics [2], addressed notably by describing community
partitions with trees or two-dimensional maps of agents and topics. Various quantitative
methods have been used, often based on categorization techniques and data describing
links between authors, papers, and/or notions—such as co-citation [4], co-authorship
[11], or co-occurrence data [12].

The lattice-based taxonomies discussed here allow overlapping category building,
with agents possibly belonging to several communities at once. They render a finer
and more accurate structure of knowledge fields by representing various kinds of in-
terrelationships. Our notion of a community is both looser and more general than the
sociological notion of structural equivalence [6] in that we identify maximal groups of
agents linked jointly to various sets of notions instead of exactly the same notions.

A similar problem of identifying communities exists in the area of social networks.
Lattices have also been used there [13,14,15], but in that context, groups of actors are
generally considered to be disjoint and a lattice is merely a first step in their construc-
tion. Besides, social network researchers are interested in social aspects of the commu-
nity structure (who the leaders are, how they influence peripheral members, how actors
cooperate within their own group and between different groups, etc.), whereas we rather
try to discover a structure of a scientific field (and are not particularly concerned with
individuals). Because of these differences in emphasis, social network lattices are typi-
cally based on data describing interaction and relations between actors, while our data,
as will be seen later, describes actors in terms of the domain for which we want to build
a taxonomy.

Before proceeding, we briefly recall the FCA terminology [10]. Given a (formal)
context K = (G, M, I), where G is called a set of objects, M is called a set of attributes,
and the binary relation I ⊆ G × M specifies which objects have which attributes, the
derivation operators (·)I are defined for A ⊆ G and B ⊆ M as follows:

AI = {m ∈ M | ∀g ∈ A : gIm} BI = {g ∈ G | ∀m ∈ B : gIm}
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In words, AI is the set of attributes common to all objects of A and BI is the set of
objects sharing all attributes of B.

If this does not result in ambiguity, (·)′ is used instead of (·)I . The double applica-
tion of (·)′ is a closure operator, i.e., (·)′′ is extensive, idempotent, and monotonous.
Therefore, sets A′′ and B′′ are said to be closed.

A (formal) concept of the context (G, M, I) is a pair (A, B), where A ⊆ G, B ⊆ M ,
A = B′, and B = A′. In this case, we also have A = A′′ and B = B′′. The set A is
called the extent and B is called the intent of the concept (A, B).

A concept (A, B) is a subconcept of (C, D) if A ⊆ C (equivalently, D ⊆ B). In this
case, (C, D) is called a superconcept of (A, B). We write (A, B) ≤ (C, D) and define
the relations ≥, <, and > as usual. If (A, B) < (C, D) and there is no (E, F ) such that
(A, B) < (E, F ) < (C, D), then (A, B) is a lower neighbor of (C, D) and (C, D) is
an upper neighbor of (A, B); notation: (A, B) ≺ (C, D) and (C, D) � (A, B).

The set of all concepts ordered by ≤ forms a lattice, which is denoted by B(K)
and called the concept lattice of the context K. The relation ≺ defines edges in the
covering graph of B(K). The meet and join in the lattice are denoted by ∧ and ∨,
respectively.

An expression B → D, where B ⊆ M and D ⊆ M , is called an (attribute) im-
plication. An implication B → D holds in (G, M, I) if all objects from G having
all attributes from B also have all attributes from D, i.e., B′ ⊆ D′ (equivalently,
D′′ ⊆ B′′). The set of all implications is summarized by the Duquenne–Guigues
basis [16].

Epistemic community taxonomy. Our primary data consists of scientific papers deal-
ing with a certain (relatively broad) topic, from which we construct a set G of au-
thors and a set M of terms and notions used in these papers. Thus, we have a context
(G, M, I), where I describes which author uses which term in one of his or her papers:
gIm iff g uses m. Then, for a group of authors A ⊆ G, A′ represents notions being
used by every author a ∈ A, while, for a set of notions B ⊆ M , B′ is the set of authors
using every notion b ∈ B. Thus, we see notions as cognitive properties of authors who
use them (skills in scientific fields).

The intent of a concept in this context is a subtopic and the extent is the set of all au-
thors active in this subtopic. Thus, formal concepts provide a solid formalization of the
notion of epistemic community (EC) traditionally defined as a group of agents dealing
with a common set of issues and aiming towards a common goal of knowledge creation
[3]. By EC, we understand henceforth a field within a given knowledge community
together with authors working in this field irrespective of their affiliation or personal
interactions, i.e., neither a department nor a research project. The concept lattice repre-
sents the structure of a given knowledge community as a taxonomy of ECs, with more
populated and less specific subtopics closer to the top [7].

2.2 Empirical Example and Protocol

We focus on a bibliographical database of MedLine abstracts coming from the fast-
growing community of embryologists working on the zebrafish during the period
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1998–2003.1 We build up a context describing which author used which notion dur-
ing the whole period, where the notion set is made of a limited dictionary of about 70
lemmatized words selected by the expert [17] among the most frequent yet significant
words of the community, i.e., excluding rhetorical and paradigmatic words such as “is”,
“with”, “study”, “biology”, “develop”, etc. At first, we thus should say that each term
appearing in an article is a notion, which is a classical assumption in scientometrics
[12,18]. In other words, we extract the semantics from article contents rather than from
their metadata. As such, scientific fields will be defined by notion sets describing EC in-
tents. Then, we extract a random sample context of 25 authors and 18 words, which we
use to illustrate the techniques described in the paper. The concept lattice of this context
is shown in Fig. 1 (only attribute labels are shown); it contains 69 formal concepts or
epistemic communities.2

Fig. 1. The concept lattice of a sample zebrafish context

We use an expert-based description of the zebrafish community taxonomy as a
benchmark for our procedure [17,19,20]. Three major subfields are to be distinguished
according to the description by the expert. First, an important part of the community
focuses on biochemical signaling mechanisms, involving pathways and receptor, which
are crucial in understanding embryo growth processes. A second field includes compar-
ative studies: the zebrafish, as a model animal, may show similarities with other close

1 Data is obtained from a query on article abstracts containing the term “zebrafish” at
http://www.pubmed.com. Using a precise term is likely to delimit properly the community,
in contrast to global terms such as “molecular biology”.

2 Diagrams are produced with ConExp (http://sourceforge.net/projects/conexp) and ToscanaJ
(http://sourceforge.net/projects/toscanaj).
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vertebrate species, in particular, with mice and humans. Finally, another significant area
of interest relates to the brain and the nervous system, notably in association with sig-
naling in brain development.

3 Concise Representation

3.1 Rationale

The concept lattice in Fig. 1 might, at first sight, appear adequately to identify and
organize ECs. However, the number of ECs is rather large and the diagram in Fig. 1 is
indeed rather complicated, even though it is derived from a fairly small context. This is a
well-known risk when using concept lattices. To quote [10], “even carefully constructed
line diagrams lose their readability from a certain size up, as a rule from around 50
elements up”. Unfortunately, there is no hope that lattices built from real-size data will
be limited to anything close to fifty elements.

Moreover, various ECs turn out to be irrelevant for the purposes of deriving a prac-
tical taxonomy of the knowledge field. One solution is to compute only an upper part
of the lattice (an order filter), e.g., concepts covering at least n% of authors. In this
case, we get an “iceberg lattice” [21]. Here, one should be careful not to overlook small
but interesting groups, for example: a group not yet supported by a large number of
followers and that represents a new research trend; or a group that contains individ-
uals who are not members of any other group. To take account of such groups, one
should also compute all lower neighbors (proper subgroups) of “large” ECs (satisfying
the n% threshold). Top-down lattice construction algorithms are particularly suitable
for this approach [22]. Alternatively, one may look at algorithms designed specifically
for constructing iceberg lattices [21] and other algorithms from the frequent itemset
mining community [23]. The reduction in the number of concepts can be consider-
able; however, though computationally feasible, this would still be unsatisfying from
the standpoint of manual analysis.

Clearly, the size of the concept lattice is not only a computational problem. The
lattice may contain nodes that are just too similar to each other because of noise in data
or real minor differences yet irrelevant to our purposes. In this case, taking an upper part
of the lattice does not solve the problem, since this part may well contain such similar
nodes. Besides, it is also of interest to distinguish major trends from minor subfields,
perhaps, with a representation allowing for different levels of precision.

In this section, we consider two approaches to improve the readability of line dia-
grams: pruning and nesting. When pruning, we assume that some concepts are irrele-
vant: we filter out those that do not satisfy specified constraints of a certain kind. In
a previous attempt to use concept lattices to represent EC taxonomies [7,8], heuristics
combining various criteria—such as extent size, the shortest distance from the top, the
number of lower neighbors, etc.—were used to score ECs and keep only the n best ones.
The resulting pictures were meaningful taxonomies, but required a posteriori manual
analysis, while it was unclear whether it could be possible to go further than a rough
representation. Here, we focus on a particular pruning strategy based on the notion of
the stability of a concept [9].



Towards Concise Representation for Taxonomies of Epistemic Communities 245

Nested line diagrams [10], on the other hand, provide no reduction and, hence, do
not incur any loss of information. Rather, they rearrange the concepts in such a way that
the entire structure becomes more readable; they provide the user with a partial view,
which can then be extended to a full view if so desired. Thus, nested line diagrams offer
a useful technique for representing complex structures. Yet, because they preserve all
details of the lattice, in order to remove (many) irrelevant details we combine nesting
and pruning in section 3.4. We thus try to get a representation that respects the original
taxonomy while hiding at the same time uninteresting and superfluous information; our
aim is a compromise between the noise level, the number of details, and readability.

3.2 Stability-Based Pruning

Our structures are complex, but, in fact, they are more complex than they should be,
since our data is fairly noisy. As a result, many concepts do not correspond to real
communities, and some pruning seems unavoidable. For instance, an author might use
a term accidentally (e.g., discussing related work), or there may be different names for
the same thing (e.g., “Galois lattice” and “concept lattice”). In the latter case, even if it
is not obvious that people preferring one term should be grouped under the exact same
field as people preferring another, at least there ought to be a super-field uniting them
(especially since we are interested in the taxonomy of knowledge fields rather than in
social networks within academia).

The pruning technique we describe here is based on the notion of stability, first intro-
duced in [24] in relation to hypotheses generated from positive and negative examples.
It can be easily extended to formal concepts of a context [9]. The definition we use is
slightly different from the original one, but the difference is irrelevant to our discussion.

Definition 1. Let K = (G, M, I) be a formal context and (A, B) be a formal concept
of K. The stability index, σ, of (A, B) is defined as follows:

σ(A, B) =
|{C ⊆ A | C′ = B}|

2|A| . (1)

The stability index of a concept indicates how much the concept intent depends on par-
ticular objects of the extent. A stable intent is probably “real” even if the description of
some objects is “noisy”. In application to our data, the stability index shows how likely
we are to still observe a field if we ignore several authors. Apart from noise-resistance,
a stable field does not collapse (e.g., merge with a different field, split into several in-
dependent subfields) when a few members stop being active or switch to another topic.
The following proposition describing the stability index of a concept (A, B) as a ratio
between the number of subcontexts of K where B is an intent and the total number of
subcontexts of K makes the idea behind stability more explicit:

Proposition 1. Let K = (G, M, I) be a formal context and (A, B) be a formal concept
of K. For a set H ⊆ G, let IH = I ∩ (H × M) and KH = (H, M, IH). Then,

σ(A, B) =
|{KH | H ⊆ G and B = BIHIH }|

2|G| . (2)
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Proof. Every C ⊆ A defines a family of contexts:

FC(K) = {KH | C ⊆ H ⊆ G and A ∩ H = C}. (3)

Obviously, FC(K) ∩ FD(K) = Ø if C 
= D. In fact, the sets FC(K) form a partition of
subcontexts of K (with the same attribute set M ). It is easy to see that all sets FC(K)
(with C ⊆ A) have the same size: |FC(K)| = 2|G|−|A|. Note also that, for KH ∈
FC(K), we have BIHIH = CIH = C′; hence, B is closed in the context KH ∈ FC(K)
if and only if C′ = B. Therefore,

|{KH | H ⊆ G and B = BIHIH }| =
2|G||{C ⊆ A | C′ = B}|

2|A| , (4)

which proves the proposition. In other words, the stability of a concept is the probability
of preserving its intent after leaving out an arbitrary subset of objects from the context.
This is the idea of cross-validation [25] carried to its extreme: stable intents are those
generated by a large number of subsets of the data. In the case of cross-validation,
it is more common to consider only (some) subsets of a fixed size. Indeed, one may
argue that subcontexts of different sizes should have different effect on the stability:
the smaller the subcontext is, the further it is from the initial—observed—context, and,
hence, the smaller should be its contribution to the instability of a concept. However,
we leave these matters for further research and use the definition of the stability given
above.

Computing stability. In [9], it is shown that, given a formal context and one of its
concepts, the problem of computing the stability index of this concept is #P-complete.
Below, we present a simple algorithm that takes the covering graph of a concept lattice
B(K) and computes the stability indices for every concept of the lattice. The algo-
rithm is meant only as an illustration of a general strategy for computing the stability;
therefore, we leave out any possible optimizations.

Algorithm ComputeStability
Concepts := B(K)
for each (A, B) in Concepts
Count[(A, B)] := the number of lower neighbors of (A, B)

Subsets[(A, B)] := 2|A|

end for
while Concepts is not empty
let (C, D) be any concept from Concepts with Count[(C,D)] = 0

Stability[(C, D)] := Subsets[(C, D)] / 2|C|

remove (C, D) from Concepts
for each (A, B) > (C, D)

Subsets[(A, B)] := Subsets[(A, B)] − Subsets[(C, D)]
if (A, B) � (C, D)

Count[(A, B)] := Count[(A, B)] − 1
end if

end for
end while
return Stability
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To determine the stability index σ(A, B), we compute the number of subsets E ⊆ A
that generate the intersection B (i.e., for which E′ = B) and store it in Subsets.
The index σ(A, B) is simply the number of such subsets divided by the number of all
subsets of A, that is, by 2|A|. Once computed, σ(A, B) is stored in Stability, which
is the output of the algorithm.

The algorithm traverses the covering graph from the bottom concept upwards. A
concept is processed only after the stability indices of all its subconcepts have been
computed; the Count variable is used to keep track of concepts that become eligible
for processing. In the beginning of the algorithm,Count[(A, B)] is initialized to the
number of lower neighbors of (A, B). When the stability index is computed for some
lower neighbor of (A, B), we decrement Count[(A, B)]. By the time Count[(A,
B)] reaches zero, we have computed the stability indices for all lower neighbors of
(A, B) and, consequently, for all subconcepts of (A, B). Then, it is possible to deter-
mine the stability index of (A, B).

Initially, Subsets[(A, B)] is set to the number of all subsets of A, that is, 2|A|.
Before processing (A, B), we process all subconcepts (C, D) of (A, B) and decrement
Subsets[(A, B)] by the number of subsets of C generating the intersection D.
By doing so, we actually subtract from 2|A| the number of subsets of A which do not
generate B: indeed, every subset of A generates either B or the intent of a subconcept
of (A, B). Thus, the value of Subsets[(A, B)] eventually becomes equal to the
number of subsets of A generating B.

Applying stability. The basic stability-based pruning method is to remove all concepts
with stability below a fixed threshold. We computed the stability indices for concepts of
our example from Fig. 1. There are 17 concepts with stability index above 0.5. Coinci-
dentally, they are closed under intersection of intents. Hence, they form a lattice, which
is shown in Fig. 2.

Fig. 2. The pruned lattice of Fig.1, with stability threshold strictly above 0.5

Naturally, removing an unstable node from a line diagram requires that upper and
lower neighbors of the remaining stable concepts (i.e. those satisfying the chosen
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stability threshold) need to be re-established. The resulting structure of stable concepts
need not necessarily form a lattice. This may or may not be a problem. If all we need
is a directly observable taxonomy of scientific fields, there seems to be no reason to
require that this taxonomy should be a lattice. In other contexts, however, a lattice may
be required in order to apply further lattice-based analysis techniques. Although a full
elaboration of this issue is beyond the scope of the present paper; we nonetheless sug-
gest some possible strategies in section 4.2.

Apart from the obvious compression—we kept 17 concepts out of 69—Fig. 2
presents a more readable epistemic taxonomy representation, displaying the major fields
of the community along with some meaningful joint communities (such as “mouse”
and “human”, as well as “signal, receptor”). However, some less important communi-
ties, like “mouse, conservation”, “mammalian”, or “signal, pathway, mouse”, are also
shown, and it is not clear from the picture that they are less important. Raising the sta-
bility threshold would eliminate these communities. Conversely, the stability threshold
chosen for Fig. 2 has already eliminated the concept “signal, receptor, growth, path-
way”, even though it is of interest, according to the expert-based description of the field
(see section 2.2). Instead of summarily throwing concepts out of a representation, it
seems preferable to have a multi-level representation in which certain communities are
not entirely eliminated, but rendered instead at a deeper level. In this respect, nested
line diagrams would appear to provide a handy representation that distinguishes be-
tween various levels of importance of notions.

3.3 Nested Line Diagrams

Nested line diagrams are a well-established tool in formal concept analysis that makes
it possible to distribute representation details across several levels [10]. The main idea
is to divide the attribute set of the context into two (or more) parts, construct the concept
lattices for the generated subcontexts, and draw the diagram of one lattice inside each
node of the other lattice. In the case of two parts, an inner concept (A, B) enclosed
within an outer concept (C, D) corresponds to a pair (A ∩ C, B ∪ D). Not every such
pair is a concept of the original context. Only inner nodes that correspond to concepts
are represented by circles; such nodes are said to be “realized”. The outer diagram
structures the data along one attribute subset, while the diagram inside an outer concept
describes its structure in terms of the remaining attributes. For more details, see [10].

Partitioning the attribute set. The first step in constructing a nested line diagram is
to split the attribute set into several parts. These parts do not have to be disjoint, but
they will be in our case; hence, we are looking for a partition of the attribute set. As we
seek to improve readability, we should display foremost the most significant attributes;
therefore, we should assign major notions to higher levels, leaving minor distinctions
for lower levels. To this end, words can be partitioned according to a “preference func-
tion”, which ranges from the simple (e.g., word frequency within the corpus) to more
complicated designs.

One could consider a minimal set of notions covering all authors, i.e., find an irre-
dundant cover set, as words from such a set could be expected to play a key role in
describing the community. Clearly, this minimal set is not always unique. In practice,
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we use the algorithm from [26]. We apply it iteratively: the first subcontext contains no-
tions forming an irredundant cover set for the whole author set; the second subcontext
includes notions not occurring in the first subcontext, while covering the set of authors
excluding those that use only notions from the first subcontext, etc. The last level con-
tains the remaining notions. Denoting by IC(K) an irredundant cover set of a context
K, we start with the context K0 = (G0, M0, I0) and, for k > 0, recursively define the
context Kk = (Gk, Mk, Ik), where Mk = Mk−1 \ IC(Kk−1), Gk =

⋃
m∈Mk

{m}′,
and Ik = I ∩ (Gk × Mk). The sequence (IC(K0), IC(K1), . . . , IC(Kn), M0 \ Mn)
for some n > 0 defines a partition of the attribute set M0 to be used for nesting.

In our example, “receptor”, “growth”, “signal”, “brain”, “mouse”, and “human”
cover the whole set of authors and constitute the outer-level subcontext notions. As
we use only two levels, the inner-level subcontext is made of the remaining terms: “em-
bryogenesis”, “evolutionary”, “conservation”, “mammalian”, “behavior”, “vertebrate”,
“plate”, “pathway”, “induction”, “phenotype”, “wild-type” and “migration”.

The resulting diagrams are shown in Fig. 3. Yet, while nesting makes it possible
to distinguish between various levels of precision, both the outer and inner diagrams
are still too large and recall the jumbled picture of Fig. 1. Stability-based pruning will
address this problem; combining both procedures should yield a concise hierarchical
representation.

Fig. 3. Outer and inner diagrams for the nested line diagram of the zebrafish context

3.4 Combining Nesting and Stability-Based Pruning

After partitioning the set of words and building lattices for individual parts, we prune
each lattice using the stability criterion. We can use different thresholds for different
parts depending on the number of concepts we are comfortable to work with. For our
example, we get the two diagrams shown in Fig. 4. Many attributes of the inner diagram
are not shown in the picture, as they are not contained in any stable intent.

We proceed by drawing one diagram inside the other and interpret the picture as
usual. Again, only inner nodes corresponding to concepts of the full context are repre-
sented by circles. Figure 5 shows the resulting structure for our context.

This approach may also help in reducing the computational complexity. Generally,
computing inner concepts is the same as computing the lattice for the whole context,
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Fig. 4. The pruned outer and inner lattices from Fig. 3 (resp. thresholds 0.70 and 0.54)

but, combining nesting and pruning, we compute inner nodes only for relevant (that is,
non-pruned) outer nodes.

Let us denote by Bp(K) the set of concepts of K satisfying the chosen pruning
criteria and ordered in the usual way (one may regard p as an indicator of a specific
pruning strategy). Assume that contexts K1 = (G, M1, I1) and K2 = (G, M2, I2) are
subcontexts of K = (G, M, I) such that M = M1 ∪M2 and I = I1 ∪ I2. We define the
set of concepts corresponding to nodes of the nested line diagram of the pruned concept
sets Bp(K1) and Bp(K2):

Bp(G, M1, M2, I)={(A, B) ∈ B(K) | ∀i ∈ {1, 2} : ((B∩Mi)′, B∩Mi) ∈ Bp(Ki)}.
(5)

Proposition 2. If Bp(K1) and Bp(K2) are
∨

-subsemilattices of B(K1) and B(K2),
respectively, then Bp(G, M1, M2, I) is a

∨
-subsemilattice of B(K) and the map

(A, B) �→ (((B ∩ M1)′, B ∩ M1), ((B ∩ M2)′, B ∩ M2)) (6)

is a
∨

-preserving order embedding of Bp(G, M1, M2, I) in the direct product of Bp

(K1) and Bp(K2).

Proof. Let (A, B), (C, D) ∈ Bp(G, M1, M2, I). Then, we have (A, B) ∨ (C, D) =
((B ∩D)′, B ∩D) ∈ Bp(G, M1, M2, I), since B ∩D∩Mi = (B ∩Mi)∩ (D∩Mi) is
the intent of a concept in Bp(Ki) for i ∈ {1, 2}. Hence, Bp(G, M1, M2, I) is indeed a∨

-subsemilattice of B(K). To see that the above-mentioned mapping is
∨

-preserving,
note that it maps the intent B ∩ D to the pair of intents (B ∩ D ∩ M1, B ∩ D ∩ M2),
and B ∩ D ∩ Mi is the intent of the join of concepts with intents B ∩ Mi and D ∩ Mi.

Unlike in standard nesting [10], the component maps (A, B) �→ ((B ∩ Mi)′, B ∩ Mi)
are not necessarily surjective on B(Ki). Hence, some outer nodes in our nested line
diagram may be empty, i.e., contain no realized inner nodes, and some nodes of the
inner diagram may never be realized.

Back to our example, the pruned outer diagram embraces most of the expert-based
description outlined in section 2.2 within a readable structure: it shows a joint focus on
“human” and “mouse” (comparative studies); features several subfields made of “sig-
nal”, “receptor”, and “growth”; and displays brain studies, also in connection with sig-
naling issues. The nested line diagram allows a deeper insight into the substructure of
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Fig. 5. Nested line diagram of pruned lattices from Fig. 4

particular fields embedded within the pruned outer diagram. One may notice that outer
nodes involving “human” and “mouse” show “conservation” in their inner diagrams
(also together with “mammalian”), while outer nodes involving “signal” and “recep-
tor” display “pathway”. This is consistent with the real state of affairs.

4 Further Work

4.1 Variants of Stability

The stability index σ as in Def. 1 and [9] refers to the stability of an intent; we call it in-
tensional. The extensional stability index of a concept (A, B) can be defined similarly:

σe(A, B) =
|{D ⊆ B | D′ = A}|

2|B| . (7)

The extensional stability of a concept is the probability of preserving its extent after
leaving out an arbitrary number of attributes, and a proposition similar to Proposition 1
holds. Extensional stability relates to the social aspect of the concept, measuring how
much the community as a group of people depends on a particular topic. It also allows
one to fight noisy words—a community based on a noisy word (or, e.g., a homograph
used differently within different communities) will be extensionally unstable.
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Proposition 1 suggests how the general stability index of a concept (A, B) could be
defined—as the ratio between the number of subcontexts of K = (G, M, I) preserving
the concept up to the omitted objects and attributes and the total number of subcontexts:

|{(H, N, J) | H ⊆ G, N ⊆ M, J = I ∩ (H × N), AJ
H = BN , BJ

N = AH}|
2|G|+|M| (8)

where AH = A ∩ H and BN = B ∩ N . As of now, we are not aware of any realistic
method for computing the general stability; thus, it is only of theoretical interest. On the
other hand, limited versions of stability (e.g., computed over subsets of a certain size)
and various combinations of extensional and intensional stability, are worth trying.

4.2 Strategies for Pruning

Other techniques aiming at reducing the number of concepts should be tested and, per-
haps, some of them can be combined with stability for better results—notably prun-
ing based on monotonous criteria like extent/intent size. Another method is given by
attribute-dependency formulas [27], involving an expert-specified hierarchy on the at-
tribute set (e.g., “human” and “mouse” are subtypes of “vertebrate”).

As noted in section 3.2, pruning may not necessarily yield a lattice. We can handle
this situation in several ways: for example, enlarging the pruned structure by including
all intersections of stable intents; or reducing the structure by eliminating some stable
intents. We may prefer to merge an unstable concept (A, B) with one of its subconcept
(C, D), rather than simply drop (A, B). However, it is not immediately clear how to
choose (C, D)—only that it should be “close” to (A, B) in some or other sense. Merg-
ing can be done by assuming that all objects from A have all attributes from D and
replacing the context relation I by I ∪ A × D (cf. [28]). However, the modified context
may have intents that are absent from the initial context, which is probably undesirable.
Alternatively, one could add B → D to the implication system of the context. The
lattice of attribute subsets generated by this augmented implication system will be dif-
ferent from the original lattice only in that B and possibly some of its previously closed
supersets are not in the new lattice.

A different approach would involve merging based on partial implications (or associ-
ation rules): compute all partial implications for the given confidence threshold and add
them to the implication system of the context. It is a matter of further experimentation
to see which strategies are suitable for our goals.

4.3 Nesting

Nested line diagrams are not limited to two levels, although it still has to be investigated
whether multi-level diagrams remain readable and interpretable. Various techniques for
partitioning attribute sets should be explored. One strategy specific to our application
is to partition words according to their type: as a verb, noun, adjective; or as a method,
object, property, etc. This can be combined with other feature selection algorithms.

It should be noted that nesting seems to have more potential if used in interactive
software tools that allow the user to zoom in and out on particular communities instead
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of having to deal with the entire picture. The fact that one need not compute everything
at once provides an additional computational advantage.

4.4 Dynamic Monitoring

Modeling changes of the community structure should be particularly useful to describe
the evolution of fields historically, either longitudinally or dynamically. The longitudi-
nal approach means establishing a relation between community structures correspond-
ing to different time points, e.g., identifying cases when several communities have
merged into one or a community has divided into several sub-communities. FCA offers
some methods for comparing two lattices built from identical objects and/or attributes
(e.g., see [29]). Yet the relevance of such methods is likely to be application-dependent,
and they should certainly be adapted for the reduced lattice-based structures we work
with. One possibility in line with the static approach is to use nested line diagrams
by nesting diagrams of contexts corresponding to successive time points. It also seems
worth exploring whether temporal concept analysis [30] has anything to offer in this
regard.

A more ambitious dynamic approach to modeling changes assumes that any ele-
mentary change in the database (any modification of G, M , or I: a new author, a new
word, an author using a particular word for the first time, or removal of authors due
to their inactivity, etc.) should correspond to a concrete change in the representation
of communities. Although not every such change will have effect on the structure of
the communities, it should always be possible to trace a change in the structure to a
sequence of elementary changes in the database.

5 Conclusion

The approach discussed in this paper is based on the assumption that community struc-
ture in knowledge-based social networks should be dealt with more deeply than by
simply relying on single-mode characterizations, as is often the case. In previous work
[7,8], it was shown how concept lattices can be used to build knowledge taxonomies
from data describing authors by sets of terms they use in their papers. As frequently
happens with concept lattices derived from real data, such taxonomies tend to be huge
and, therefore, hard to compute and analyze. The computational complexity can be
partially addressed by reducing the number of agents, since a taxonomy centered on
knowledge fields rather than individuals justifies the use of a random representative
sample of authors.

However, the interpretability of results requires a more serious effort. In this paper,
we proposed a pruning method based on the stability indices of formal concepts [9]. We
think that this method does not merely reduce the concept lattice to a somewhat rougher
structure; it also helps to combat noise in data, so that the resulting structure might even
be more accurate in describing the knowledge community than the original lattice is.

We suggested that this method could also be applied to constituent parts of a nested
line diagram to achieve an optimal relationship between the readability of the taxonomy
and the level of detail in it. This is beneficial from the stance of computational complex-
ity, too: it is easier to compute the lattices of subcontexts used in nesting and then prune
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each of them individually than to compute the lattice of the entire context and prune
it. Besides, nested line diagrams admit “lazy” computation: within an interactive soft-
ware tool the user can choose which outer nodes to explore. As a result, inner diagrams
corresponding to neglected outer nodes need not be computed, unless required.

We have illustrated the proposed techniques with a small example. Of course, wider
experiments are needed to see how this works. There are open questions: how to effi-
ciently compute stability, how exactly stability-based criteria should be formulated and
applied, how other compression techniques perform against stability-based pruning, etc.
(see section 4). Thus, this paper is merely a first step towards a consistent methodology
for creating concise knowledge taxonomies based on concept lattices.
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Abstract. In this paper, we propose a generic description of the concept
lattice as classifier in an iterative recognition process. We also present the
development of a new structural signature adapted to noise context. The
experimentation is realized on the noised symbols of GREC database [4].
Our experimentation presents a comparison with the two classical numer-
ical classifiers that are the bayesian classifier and the nearest neighbors
classifier and some comparison elements for an iterative process.

1 Introduction

The work presented in this paper takes place in the field of automatic retro-
conversion of technical documents and proposes to use concept lattice to recog-
nize graphic objects, and more precisely to classify noised symbols images. This
graph issued from Formal Concept Analysis [14], has often been used in data
mining. A recent study [9] gives a comparison of several classification methods
based on concept lattice, and clearly shows the interest of its use in classification.

Fig. 1. The iterative recognition stages

In study [6], we showed that concept lattice has a structure which looks like
the decision tree, and that its bigger size gives more robustness to the noise than
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the decision tree. We also highlighted the recognition parameters and use the
concept lattice as a classifier in a one-step process.

Here, we present an iterative process (Fig. 1), in which we repeat the recogni-
tion process with selection of new attributes (or characteristics) in the signatures
at each iteration. In the field of symbols recognition, an iterative process is at-
tractive because various techniques (structural, statistical) enable to extract new
data from images. In our one-step process, we used a statistical signature which
gave good results of recognition, and for the iterative process, we have chosen
to complete the description by a structural signature adapted to the context
of noise. In our process, discretization and particularly selection of attributes
are necessary to reduce the context size. Moreover, we chose to build the con-
cept lattice because the graph allows to navigate and to progressively validate
attributes to classify the noised data.

Recognition process (Fig. 1) is usually composed of the learning stage and the
classification stage (section 2). In part 2.2, we describe the data learning which
data are discretized and the concept lattice is built. Classification and especially
navigation in the concept lattice is described in part 2.3. Part 3 proposes a com-
parison in cross-validation with the bayesian classifier and the nearest neighbors
classifier and to finish, conclusion and extensions are presented in part 4.

2 Process

The iterative recognition process follows a coarse-to-fine strategy with selection
of new attributes at each iteration. The recognition process (Fig. 1) is composed
of learning and classification. We first have a set of model objects (classes are
known) and a set of objects to classify. Classification aims to attribute a class
label to each object. After each iteration, we propose a final concept (defined in
part 2.3) which contains one or several classes. When it contains only one class,
the process is finished, otherwise, the signatures don’t discriminate enough the
classes, and another selection of attributes is needed to determine the class label.

2.1 Signatures

In our case, objects to recognize are graphic images described by equal size
normalized numerical signatures [13]. We chose to use the two following types
of signatures : statistical and structural.

Statistical. These kind of signatures describe the pixels distribution on the
images. In our previous work [6], experimental results showed that the statistical
signature based on the Radon transform [12] seems to be the most appropriate
for symbols description. This signature is composed of 50 values and describes
the pixels organization in several orientations.

Structural. Symbol images are particular and can be characterized by their
spatial organization. A structural signature aims to describe the topology of the
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Fig. 2. Example of symbol, its extracted segments (left), and its topological graph
(right)

primitive elements which composed the symbols. We want to discriminate the
symbols by searching in their structure, specific forms as rectangles, triangles,
. . . , but in a generic way, without define the forms we are looking for.

First, we extract these primitives elements, as segments, using the robust
Hough transform. We treat segments by pairs, and extract their relative position
in a triplet of information : <relation type, relation value, length ratio>. Relation
type corresponds to the visual interpretation of the intersection of the pair (X, Y,
V, P for parallel, and O for others), relation value is the relative angle between
the pair for X, Y, V and O, and the relative distance for P, and length ratio
is the relative length of the pair of segments. These triplets are introduced in
a topological graph and its corresponding adjacency matrix. They describe the
whole relations which compose the symbol (see Fig. 2).

Then, our signature is based on Geibel work [3] : compute the number of oc-
currences of various paths in the topological graph. Paths represent generic forms
which characterize the structure of the symbols. Depending on the length of the
searched paths, we can determine the precision level of the symbols descrip-
tion. The final signature will be composed of the paths and their corresponding
occurrences in the different symbols.

2.2 Learning

The learning stage consists in organizing a concept lattice data issued from a
set of objects. It is composed of: discretization of data and building of the lattice
(Fig. 1).

Discretization. This stage [11] consists in organizing the signatures p = (pi)i≤n

issued from the objects set O, in intervals, that characterize each class of objects.
At each step of discretization, an interval is selected to be cut. This selection
depends on a cutting criterion, and the cutting process is repeated until a stop-
ping criterion is validated. In study [6], we selected the maximal distance as non
supervised criterion and the Hotelling’s coefficient as supervised criterion.



Towards an Iterative Classification Based on Concept Lattice 259

Here are some stopping criteria: critclass separated is ”to stop when classes are
separated”; critnb steps is ”to stop when the discretization steps number equals a
constant nb”; critnb classes max means that the final concept contains at most nb
classes; and critcutting min limits the cutting criterion above a minimal value.

When discretization is performed, objects p ∈ O are characterized by intervals
I = I1 × I2 × . . . × In with Ii the intervals set of each attribute i = 1 . . . n, and
the membership relation R between objects and intervals can be deduced.

Building of the concept lattice. This stage immediately follows the dis-
cretization stage and is totally determined by the membership relation R be-
tween objects and intervals without criterion or parameter.

A concept lattice is composed of a set of concepts ordered by inclusion, which
forms a graph (that has the lattice properties [1]). We associate to a set of
objects A ⊆ O, the set f(A) of intervals in relation R with A: f(A) = {x ∈
I | pRx ∀ p ∈ A}. Dually, for a set of intervals B ⊆ I, we define the set g(B) of
objects in relation R with B: g(B) = {p ∈ O | pRx ∀ x ∈ B}.

A formal concept is a pair objects-intervals (A, B) with A ⊆ O, B ⊆ I,
f(A) = B and g(B) = A. Two concepts (A1, B1) and (A2, B2) are in relation in
the concept lattice if they verify the inclusion property: (A1, B1) ≤ (A2, B2) ⇔
A1 ⊇ A2 equivalent to B1 ⊆ B2. Let ≺ be the transitive reduction associated
to ≤. The minimal concept (O, f(O)) according to the relation ≤ contains the
whole objects O and the set f(O). Note that f(O) = ∅ when intervals shared by
all the objects are removed. Dually, the maximal concept is (g(I), I). For more
information about Galois connection and concept lattice, see [1].

Our algorithm is based on Bordat [2] and Morvan and Nourine [10] ones.
We choose it for its implementation simplicity and the possibility to generate
on demand the required concepts of the lattice, instead of building the whole
graph. It is a real advantage because the main limit of concept lattice is its cost
in time and space. Indeed, its size is bounded by 2|S| in the worst case, and by
|S| in the best case. The main advantage of this graph is its good readability
because it is easy to interpret.

2.3 Classification

Concept lattice can be seen as a search space in which we move by validation of
the intervals issued from the discretization stage. The signature s = (s1, . . . , sn)
of the object to recognize is introduced in the concept lattice starting from
the minimal concept : (O, f(O)) meaning that the whole classes of objects are
candidates to recognition and no interval is validated. We progress step by step in
the concept lattice by validation of new intervals and consequently by reduction
of the objects set and their corresponding classes, until we reach a final concept.

A concept is a final concept when it is the last concept in the classification
progress containing objects of some class. A final concept (A, B) corresponds to
the sup-irreducibles of the lattice. (see [1]) and is characterized by:

|GetClasses((A, B))|! =
∑

(A′,B′)�(A,B)

|GetClasses((A′, B′))|
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From a current concept, an elementary step of classification consists in se-
lecting an interval from a set of intervals S, to progress to a new concept.
More precisely, S is a family of intervals obtained from the n immediate suc-
cessors (A1, B1), . . . , (An, Bn) of the current concept (A, B) and defined by:
S =

⋃n
i=1 Bi\B = {X1, . . . , Xn}. Thus, the choice criterion parameter consists

in choosing a subset Xi of intervals among S using a fuzzy distance measure d.
In our experiments, symbols are noised and thus signature values can be mod-

ified. To make supple the boundaries intervals, we use a fuzzy distance measure
d(si, x) = μA(x), with μ the likelihood degree of x ∈ A, and A a fuzzy set.

3 Experimental Results

Our previous work [6] showed that concept lattice is more appropriate to the
classification of noised graphic objects than the decision tree. Moreover, experi-
mental results showed that the Radon signature, the Hotelling’s cutting criterion
seem to be the most appropriate. So we used them in these new tests.

3.1 Tests with Separation of Classes

In this experiment, concept lattice is compared to bayesian classifier and nearest
neighbors classifier (k-NN). For the concept lattice, we use critclass separated as
stopping criterion, so one iteration is required to obtain a label of class. Our
data consist of 2 sets of 10 classes of symbols of GREC2003 [4] (namely cl1-10
and cl11-20), in which each class contains 1 ”model” symbol and 90 symbols
(Fig. 3) noised by the Kanungo method [7]. We use another data set composed
of 25 classes (namely cl1-25) of GREC2005 database. This symbols set is more
noised than those of GREC2003, and is composed of 175 symbols.

Fig. 3. 5 ”model” symbols of GREC2003 database (left) and 6 noised symbols of
GREC2005 database (right)

We test the 3 classifiers by the cross-validation technique [8]. The test result is
the average of the n recognition rates. On GREC2003 symbols, we try: 5 blocks
of 182 symbols (test 1), 10 blocks of 91 symbols (test 2) and 26 blocks of 35
symbols (test 3). On GREC2005 symbols, we try 5 blocks of 35 symbols (test 4).
Recognition rates are shown in Figure 4.

For test 4, results are really low due to the high level of noise. From these
results, we deduced that k-NN classifier gives the best rates, and bayesian clas-
sifier gives better rates than the concept lattice only for big sizes of the learning
set (tests 1 and 2). Notice that concept lattice only needs between 6 and 15
attributes of the Radon signature among the 50 values, on the contrary to the
bayesian and the k-NN classifiers. The relatively good results of these tests in-
dicate that an iterative process is an interesting way to explore.
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Fig. 4. Results of cross-validation for the 3 classifiers

3.2 Tests without Separation of Classes

In order to set up an iterative process, we need to define a stopping criterion
of discretization. In paper [5], we study the recognition potential of 4 stop-
ping criteria. Results were encouraging and showed that the improvement of the
recognition rates was possible with an iterative process. However, we would like
to find a converging stopping criterion, but none of studied criteria respect this
property. We decided to use a validation set of symbols to determine the con-
cepts which produce classification errors and stop the progression in the graph
for these concepts. Then, from this first step of recognition, it is possible to
pursuit the process for the concerned symbols with a new signature.

4 Conclusion

The experimentations show that concept lattice gives relatively close recogni-
tion rates than the famous k-NN classifier. Moreover, the iterative recognition
approach described here is interesting to handle big learning sets, what was rela-
tively costly, and the first results are promising. Moreover, this iterative system
could be useful when classes are few separable. Indeed, to characterize these
classes, we would like to use our new structural signature with the most ap-
propriate description level, and to complete with the information given by the
statistical signature.
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Abstract. This paper presents an original experiment based on fre-
quent itemset search and lattice based classification. This work focuses
on the ability of iceberg-lattices to discover and represent flows of pa-
tient within a healthcare network. We give examples of analysis of real
medical data showing how Formal Concept Analysis techniques can be
helpful in the interpretation step of the knowledge discovery in databases
process. This combined approach has been successfully used to assist
public health managers in designing healthcare networks and planning
medical resources.

Keywords: Formal Concept Analysis, frequent itemsets, network.

1 Introduction

Knowledge Discovery in Databases (KDD) is an iterative and interactive process
for identifying valid, novel, and potentially useful patterns in data [1]. KDD is
usually divided into three main steps: data preparation, data mining, and inter-
pretation of the extracted units. Data mining, often considered as the central
step in this process, is still an active field of research. The success key in KDD
practice relies also on ability of easily producing units understandable as knowl-
edge units. One way of achieving such a goal relies on an adapted visualization
of the extracted units.

In this paper, we present an original experiment based on both frequent item-
set search and lattice-based classification. This experiment holds on medical
data and is aimed at showing the interactions and collaborations between hos-
pitals in the French Region of Lorraine. This experiment may be regarded from
two points of view: on the one hand, it is based on frequent itemset search on a
medico-economic database, and on the other hand, the visualization of extracted
units is based on Formal Concept Analysis (FCA) techniques [2], organizing the
extracted units into a lattice for medical analysis and interpretation. At our
knowledge, this is an original combination of data mining and FCA techniques
that has been rarely carried on until now. Indeed, this is one of the main feature
of this paper to show how FCA techniques can be very helpful in the interpre-
tation step of KDD process. The results of this experiment have been used by
healthcare administration in Lorraine for planning and evaluation purposes [3].
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2 Health Networks and Collaborations

Healthcare networks are sets of healthcare actors working in cooperation, sharing
information, and providing care for the same patients. In France, some networks
are formally structured but others are still in an implicit existence. Thus, health-
care policy should be based on this current state of things to plan new networks
or optimize existing ones. However, for both structured and implicit networks,
knowledge on the degree of collaboration between hospitals is poor, because no
information system is dedicated to this type of monitoring. Such an informa-
tion system could help measuring collaboration by analyzing the flow of patients
being treated in more than one hospital.

This issue is close to the problem of cartographying a communication net-
work [4]. A healthcare network can be represented by an undirected graph where
hospitals are the nodes, and edges represent patients flows, i.e. sets of patients
shared by two hospitals. In our context, healthcare networks can involve hun-
dreds of hospitals and tens of thousands of patients. It is a challenge to visualize
a network with such a volume of data.

Furthermore, this problem goes beyond simple cartography. Patient flows de-
pend on several constraints: geography, location of high technology devices and
specialized medical teams, personal affinities between physicians, regulations,
type of disease. . . According to these constraints, hospitals do not have the same
role within a healthcare network. There exists high level relations that cannot
be represented in usual network maps. In the domain of social network analysis,
Freeman [5] has proposed to use FCA to produce useful insights about struc-
tural properties of relationships between social actors. This approach could be
extended to our problem. Nevertheless, a lattice-based representation does not
always support the size of data. A way to deal with that issue is to only represent
the most significant flows.

The analysis of patient flows can also be seen as a consumer behavior prob-
lem. Consumer behavior and market basket analysis are well-known problems in
data mining and can be solved using frequent itemset search and association rule
extraction [6]. In our application domain, a formal context can be built with pa-
tients as objects and the hospitals in which they have been treated as attributes.
Discovering significant flows of patient between hospitals can be achieved by
mining this context for searching for frequent itemsets of hospitals sharing the
same patients. However, it may be difficult to exploit the results because of the
large number of extracted units, and because of the lack of visualization support.

The links between the frequent itemset search and FCA have been studied
by several research groups [7,8,9]. Stumme [10] has introduced iceberg lattices,
which are concept lattices of frequent closed itemsets. The approach combining
visualization and frequent itemset search is a feature of first importance in our
research work. Firstly, it is a top-down method for gradually discovering and
representing significant patient flows. Secondly, it provides easily understand-
able results, especially for novice users. In a similar way, Duquenne [11] has
studied associations of psychological handicaps of children. Using filters on a
weighted lattice, he has shown the ability of FCA to describe profiles of patients.



Using Formal Concept Analysis for Mining and Interpreting Patient Flows 265

Furthermore, due to their ability to encode dualities [12], concept lattices can
provide two points of view for interpreting patient flows: an intensional one in
which flows result from interaction and collaboration of healthcare providers
within a network, and an extensional one where flows can be regarded as groups
of patients sharing a common medical profile.

3 Iceberg-Lattices

Let K := (G, M, I) be a formal context where G is a set of objects, M a set of
attributes and I a binary relation between G an M .

Definition 1. Let B ⊆ M and let minsupp be a threshold ∈ [0, 1]. The support
count of the attribute set B in K is supp(B) := |B′|

|G| . B is said to be a frequent
attribute set if supp(B) � minsupp.

A concept is called frequent concept if its intent is frequent. The set of all
frequent concepts of a context K is called iceberg lattice of the context K.

4 Discovery Process of Patient Flows

In France, the PMSI1 database is a national information system used to describe
hospital activity with both an economical and medical point of view. We have
worked on two years of PMSI data of the Lorraine Region in France. Data
preparation consists in building a formal context where objects are patients and
attributes are hospitals lying in the database. A patient is related to a hospital
whenever the patient has been treated in that hospital. An iceberg-lattice is then
built from this context using the Titanic algorithm [10] implemented in Galicia
3.0 [13]. Hasse diagrams are drawn with the Graphiz [14] tools.

5 Results

We present here an example of cancer network analysis. In this experiment, the
formal context holds 28009 patients and 158 hospitals. Figure 1 shows the re-
sulting iceberg for a minsupp=0.017, i.e. 50 patients. For clarity, ⊥ was removed
and right and leftmost part of the lattice are not drawn. A first comment can be
made about its general shape. It is more wide than deep because the context is
sparse and data are poorly correlated. This means that patient flows are most
of the time tightly partitioned, and that patients are rarely hospitalized in more
than two hospitals. The intent of co-atoms, i.e. immediate descendants of �, is
always a singleton. This means a hospital never shares all of its patients with
another one, or if it is so, less than 50 patients are involved in the interaction.
The intent of atoms, i.e. the immediate ascendant of ⊥, is always a pair. The
extent of atoms gives an idea of the strength of the collaboration between the

1 Programme de Médicalisation des Systèmes d’information.
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two hospitals: the larger is the cardinal of the extent, the higher is the strength
of the collaboration(i.e. the more patients are shared between the two hospitals).
The iceberg can be divided in two parts:

– on the right, concepts that are both atoms and co-atoms. They represent
institutions that share a few patients with others. This is that either they
treat a few patients, or they work in a relative autonomy, or collaboration
is split with many other hospitals.

– on the left, concepts that have at least a sub-concept (different from ⊥).
They represent a hospital receiving a significant number of patients, and
having collaborations with at least one other establishment.

Fig. 1. Iceberg lattice for all type of cancer

The left part of the iceberg may be seen as the backbone of collaborations for
cancer treatment, in the Lorraine region. This sub-lattice can be re-drawn re-
moving both � and ⊥ as shown on figure 2, along with a map of the hospitals in
the Lorraine region. Co-atoms are then represented by ellipses. Their label shows
the name of the hospital in their intent and the size of their extent. Diamonds are
the second rank concepts (i.e. the atoms). Their label shows the size of their ex-
tent. Arrows represent the super-concept/sub-concept relation. These diamonds
can be seen as cooperation between several hospitals. For example,CHU NANCY

and CRLCC AV VAN hospitals share 624 patients.
This figure contains a lot of information for the domain expert. First of all,

three concepts have a large number of patients and many sub-concepts: CHU-

NANCY, CHR-METZ-THI, and CRLCC-AV-VAN. They are located in Nancy and Metz,
the two largest cities in Lorraine . The large number of sub-concepts related to
these institutions precisely shows that they are reference centers. They employ
highly skilled and specialized personnel. Treatments given there rely on state-
of-art technology. Furthermore, they actively participate in anti-cancer research
programs.

The aspect of the lattice reflects geographical constraints that shapes the net-
work structure. An East-West separation line clearly appears. Many flows are
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Fig. 2. Cooperation between hospitals for the treatment of cancer

concentrated in the north around the CHR-METZ-TH hospital. By contrast, con-
cepts sharing sub-concepts with CHU-NANCY and CRLCC-AV-VAN concepts concern
most of the time hospitals located in the southern Lorraine. Let us also notice
that the CH-SARRGUEMIN hospital on the top right of the figure has a trans-border
cooperation with the CHU-STRAS hospital in the next region of Alsace.

The lattice also illustrates the influence of statutory constraints The PC-GENT-

NANCY concept has common sub-concepts with PC-LPAS-NANCY, CL-SAND-VAND

and PC-MAJORELLE. This makes a sub-network gathering private hospitals in the
city of Nancy.

Finally, the lattice allows to visualize two important sets of knowledge units:
one is on the most important centers for the treatment of cancer, the other on the
geographical locations of centers and the patient flows between these locations.
Indeed, this can be seen as the concrete result of a working KDD system.
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6 Conclusion

We have presented here a combined approach relying on data mining and FCA
for representing patient flows in a healthcare system. This method takes advan-
tage of iceberg-lattices to discover and to display in a simple way the backbone
of healthcare networks.
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Abstract. Design defects are poor design choices resulting in a hard-to-
maintain software, hence their detection and correction are key steps of a
disciplined software process aimed at yielding high-quality software arti-
facts. While modern structure- and metric-based techniques enable pre-
cise detection of design defects, the correction of the discovered defects,
e.g., by means of refactorings, remains a manual, hence error-prone, ac-
tivity. As many of the refactorings amount to re-distributing class mem-
bers over a (possibly extended) set of classes, formal concept analysis
(FCA) has been successfully applied in the past as a formal framework
for refactoring exploration. Here we propose a novel approach for defect
removal in object-oriented programs that combines the effectiveness of
metrics with the theoretical strength of FCA. A case study of a spe-
cific defect, the Blob, drawn from the Azureus project illustrates our
approach.

Keywords: Design Defects, Formal Concept Analysis, Refactoring.

1 Introduction

Design defects are bad solutions to recurring design problems in object-oriented
programming. The activities of detection and correction of design defects are
essential to improve the quality of programs and to ease their maintenance and
evolution. Indeed, design defects have a strong negative impact on quality char-
acteristics such as evolvability and maintainability [4]. A program without design
defects is easier to understand and change and thus has lower maintenance costs.

However, the detection and correction of design defects are time-consuming
and error-prone activities because of lack of (semi-)automated techniques and
tools. Although approaches exist to detect design defects, using metrics [7] for
example, to the best of our knowledge, no approach attempts to correct design
defects (semi-)automatically. Huchard and Leblanc [6] use formal concept analy-
sis (FCA) to suggest restructurations of class hierarchies to maximise the sharing
of data structure and code through fields and methods and remove code smells
from the program. Arévalo et al. applied FCA to identify implicit dependencies
among classes in program models [1]. They build models from source code and
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extract contexts from the models. Concepts and lattices generated from the con-
texts with the ConAn engine are filtered out to build a set of views at different
levels of abstraction. These two approaches provide interesting results but none
attempts to suggest refactorings to correct design defects.

We propose to apply FCA on a suitable representation of a program to sug-
gest appropriate refactorings for certain design defects. A refactoring is a change
performed on the source code of a program to improve its internal structure with-
out changing its external behaviour [4]. In particular, we examine the benefits
of FCA and concept lattices for the correction of a very common design defect,
the Blob [2, p. 73–83]. It is generally accepted that a Blob reflects procedural
thinking during the design of an object-oriented program. It manifests through
a large class monopolising the computation, surrounded by a number of smaller
data classes, which embed a lot of attributes and few or no methods.

Design defects are the results of bad practices that transgress good object-
oriented principles. Thus, we use the degree of satisfaction of those principles
before and after the refactorings as a measure of progress. Technically speaking,
we rely on quantification of coupling and cohesion, which are among the most
widely acknowledged software quality characteristics, key for the target main-
tainability factor. The cohesion of a class reflects how closely the methods are
related to the instance variables in the class [3]. A low cohesion score witnesses a
cohesive class whereas a value close to 1 indicates a lack of cohesion and suggests
the class might better be split into parts. The coupling of a class is defined as the
degree of its reliance on services provided by other classes [3], i.e. it counts the
classes to which a class is coupled. A well-designed program exhibits high aver-
age cohesion and low average coupling, but it is well known that these criteria
are antinomic hence a trade-off is usually sought.

Our intuition is that design defects resulting in high coupling and low cohe-
sion could be improved by redistributing class members among existing classes
(with possibly new classes) to increase cohesion and–or decrease coupling. FCA
provides a particularly suitable framework for helping in redistributing class
members because it can discover strongly related sets of individuals wrt. shared
properties and hence supports the search of cohesive subsets of class members.

2 Combining Metrics and FCA to Correct Design Defects

2.1 Running Example

We illustrate our approach using Azureus version 2.3.0.6, a peer-to-peer pro-
gram [8] that contains 143 Blobs for 1,449 classes (191,963 lines of code) and
show that FCA can suggest relevant refactorings to improve the program. We
choose Azureus because it has been heavily changed and maintained since its
first release in July 2003. The addition of new features, optimisations, and bugs
fixes have introduced design defects. We choose to illustrate our approach with
the Blob because it impacts negatively the two important quality characteristics:
such classes show low cohesion and high coupling. We notice that the underlying
classes that constitute the Blobs in Azureus are difficult to understand, maintain,
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and reuse because they have a large number of fields and methods. For example,
the class DHTTransportUDPImpl in the package com.aelitis.azureus.core.-
dht.transport.udp.impl, which implements a distributed sloppy hash table
(DHT) for storing peer contact information over UDP, has an atypically large
size. It declares 52 fields and 71 methods for 3,211 lines of code. It has a medium-
to-high cohesion of 0.542 and a high coupling of 41 (8th highest value among
1,449 classes). The data classes that surround this large class are: Average,
HashWrapper in package org.gudy.azureus2.core3.util and IpFilterMan-
agerFactory in package org.gudy.azureus2.core3.ipfilter.

2.2 Our Approach in a Nutshell

Figure 1 depicts our approach for the identification of refactorings to correct
design defects in general and the Blob in particular. The diagram shows the
activities of detection of design defects and correction of user-validated defects.

Detection

FCA  Algorithms

Code Representation

Context Extraction Interpretation

        Code

Model

1

Suspicious Classes

Contexts Concepts / Lattices

Refactorings

2

3 4 5

Metamodel PADLMetric-based Detection

FCA -based Correction

Fig. 1. Detection and FCA-based Correction of Design Defects

First, we build a model of the source code which is simpler to manipulate than
the raw source code and therefore eases the subsequent activities of detection
and correction. The model is instantiated from a meta-model to describe object-
oriented programs.

Next, we apply well-known algorithms based on metrics and–or structural data
on this model to single out suspicious classes having potential design defects. We
automatically extract contexts related to these classes (and to their methods and
fields) from the model of the source code. These contexts are built to enable the
detection of related methods, fields, and classes (see Section 2.3).

Then, the contexts are fed into a FCA engine which generates concept lattices.
We explore the lattice structure (order) and interpret the discovered concepts to
clarify the relationships among members of the suspect classes and their links
to the rest of the program. Both concepts and order are analysed to suggest
refactorings to recreate the discovered related sets of elements.
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2.3 Encoding Blobs into Formal Contexts

To correct Blob design defects, we need to identify cohesive sets of methods
and, possibly, fields with respect to three criteria: usage of fields, calls to other
methods, and reliance on data classes. Hence, our individuals can be either meth-
ods or fields, our properties are substitutable to fields, methods, or data classes
and our incidence relations represent associations, method invocations, or use-
relationships.

Table 1. Context K1 linking methods of the large class to fields of the class
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(m0) checkAddress() ×
(m1) externalAddressChange() ×
(m2) getAddressChange() ×
(m3) process() × × × × × × ×
(m4) sendFindNode() × × × ×
(m5) sendFindValue() × × × ×
(m6) sendStore() × × × ×
(m7) setRequestHandler() ×
(m8) testInstanceIDChange() ×
(m9) testTransportIDChange() × ×
(m10) updateContactStatus() × ×
(m11) updateStats() × × × × × × × × × × ×

Context 1. In the first formal context, K1, individuals are methods of a suspect
large class and properties are fields of that class. The incidence relation is the
method-uses-field relationship. The context aims at identifying methods using
the same sets of fields and fields used by cohesive sets of methods. It allows to
assess the cohesion of a class because methods sharing the same fields are, by
definition, cohesive.

Table 1 illustrates the context drawn from the large class DHTTransportUDP-
Impl in Azureus. It shows the methods (individuals in rows) and their use-
relationship links with fields (properties in columns) of the large class. Codes
are provided that are used when presenting lattices in the next paragraphs.

We defined three contexts. In the first formal context, K1, individuals are
methods of a suspect large class and properties are fields of that class. The
incidence relation is the method-uses-field relationship. The context aims at
identifying methods using the same sets of fields and fields used by cohesive
sets of methods. It allows to assess the cohesion of a class because methods
sharing the same fields are, by definition, cohesive. In the second formal con-
text, K2, both individuals and properties are methods of the suspect large class,
while the incidence is the method-invocation relationship. This context high-
lights subsets of cohesive methods, because methods invoking the same set of
other methods are highly cohesive. In the third formal context, K3, individu-
als are methods and fields of the large class and properties are the surrounding
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data classes. This context represents the use-relationship and allows to assess
the coupling between the large class and its data classes. We can identify which
methods and fields of the large class should be moved together to some data
class.

2.4 Interpretation of Lattice Structure

We build lattices from the contexts K1, K2, and K3, respectively. We use these
lattices to interpret the inner structure of the large class and then to suggest
refactorings. More specifically, we look for specific configurations of concepts
that reflect the presence of cohesive and (un)coupled sets. Intuitively, shared
usages of fields and calls of methods is a sign of cohesion whereas coupling is
directly expressed by the reliance of a class member on a data class. We define
the following interpretation rules.

Rule 1. [Collection of cohesive and independent subsets.] If a set of concepts has
only the lattice supremum (top) as a successor and only the infimum (bottom)
as a predecessor (pancake lattice), then they all represent cohesive and disjoint
subsets of the individuals. For instance, in Figure 2, we interpret the concepts
in the area 2 (on the right of the oblique line) as sets of elements that, whenever
put together, form a low-cohesion group. Indeed, there is no collaboration (i.e.,
no shared fields) between the individuals in different concepts.

Rule 2. [A large cohesive subset.] If a sub-structure of the lattice has many
concepts that form a network with all their meets and joins (different from the
supremum and the infimum of the lattice), then that structure represents a
cohesive set of individuals. Such a situation is depicted in Figure 2, on the left
of the oblique line (zone 1).

Lattice 1. Recall that the lattice in Figure 2 represents the method-uses-
attribute relationship. By applying Rules 1,2, we obtain the following four
concept sets representing cohesive subsets of methods and fields in the large
class:

Combination of lattices. Following the interpretation of the lattices, we split
the large class into two ways. First, we move disjoint and cohesive subsets of meth-
ods and–or fields that are related to a data class in that data class. Second, we
organise cohesive subsets that are not related to data classes in separate classes.

Refactorings. Before the refactorings, class DHTTransportUDPImpl had a co-
hesion of 0.542 and a coupling of 41. After the refactorings, the cohesion of the
classes is maximum of 0.278 and the coupling has reduced to 34, which shows a
better compliance to good object-oriented design principles and highlights the
interest of our approach.

Implementation. We use PADL to model source code and Galicia to con-
struct and visualize the lattices. PADL is the meta-model at the heart of the
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Fig. 2. Concept lattice of the methods x fields context

Ptidej open-source tool suite (Pattern Trace Identification, Detection, and En-
hancement in Java) [5]. Galicia is a multi-tool open-source platform for creat-
ing, visualizing, and storing lattices. Both tools communicate by means of XML
files describing data and results. Thus, an add-on to Ptidej generates contexts
in the XML format of Galicia, which are then transformed by the tool into
lattices and shown on screen for exploration.

3 Conclusion

Design defects are the results of bad practices that transgress good object-
oriented design principles. A low coupling and a high cohesion are among the
most recognised design principles to assess the quality of programs, in particular
their maintainability and evolvability.

We propose an approach based on the joint use of metrics and FCA to suggest
corrections to design defects in object-oriented programs. FCA provides a sketch
of the target design by grouping methods and fields into cohesive sets which, once
turned into separate classes, represent a better trade-off between coupling and
cohesion. Our approach can be systematically generalised to other design defects
characterised by a high coupling and a low cohesion.

In the long term, we plan to develop fully automatic correction mechanisms
and to propose an integrated tool platform to support FCA-based refactorings.
A refinement of the proposed rules for lattice structure interpretation will also
be developed, allowing for more subtle, possibly numerical, decision criteria for
cohesive sets of concepts.
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Abstract. Type signatures are common in modern linguistic theories.
Their construction and maintenance is intricate, and therefore, an au-
tomatic induction method is desirable. In the present paper we present
FCAType, a module of our system FCALing, that automatically induces
type signatures from sets of untyped feature structures. The induction
procedure is based on so-called decomposition semilattices which serve
as a basis for initial type signatures. These signatures can be folded up
to result in compact and restrictive type signatures which adequately
specify the input structures.

1 Introduction

The primary task in grammar engineering is to construct a grammar which gen-
erates exactly those phrases which are well-formed in the target language. The
purpose of the lexicon is to provide the basic units of the language. Modern lin-
guistic theories tend to express more and more grammatical information in the
lexicon. Hence, “lexical entries have evolved from simple pairings of phonologi-
cal forms with grammatical categories into elaborate information structures, in
which phonological forms are now paired with more articulated feature structure
descriptions.”, [1, p.173]. Feature structures (FSs) are recursive attribute-value
structures which are known as frames in other disciplines, e.g. [2].1 An example
lexicon with small ‘toy’ FSs taken from [4] is shown in Fig. 1.

As depicted in Fig. 1, FSs can be written as recursive attribute-value matri-
ces (AVMs). The AVMs are constructed as follows: FSs are enclosed in square
brackets. Each first-level attribute is followed by a colon and its value. The val-
ues are either atomic (i.e., not specified by further attributes) or complex FSs.
Restricting a FS to one of its paths yields the value of the path in the FS, e.g.,�
�cat : np

head :

�
agr :

�
pers : third
num : sing

����@head agr =

�
pers : third
num : sing

�
.

Ordered by subsumption the FSs form a semilattice where the generalization of
two FSs is the most specific FS which subsumes both FSs.
1 Due to space limits we decided to omit all formal definitions and to concentrate

on why FCAType is useful and how it works in principal. A detailed description of
FCAType and a formal proof that the described procedures are well-defined can be
found in [3]. FCAType can be obtained from the author on request.

S. Ben Yahia et al. (Eds.): CLA 2006, LNAI 4923, pp. 276–281, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Uther =
cat : np

head : agr :
pers : third
num : sing

sleeps =

cat : vp

head :

form : finite

subj

cat : np

head : agr :
pers : third
num : sing

knights =
cat : np

head : agr :
pers : third
num : plur

sleep =

cat : vp

head :

form : finite

subj

cat : np

head : agr :
pers : third
num : plur

Fig. 1. Example lexicon with small untyped feature structures

In order to organize the lexicon, avoid redundancy, and capture generaliza-
tions, a strict type discipline has been developed [5]. Types are assigned to FSs
and their restrictions and they are organized in a type hierarchy, that is, in a
finite semilattice. In the AVM representation of a FS types are represented as
small indices. In order to restrict the class of admissible FSs, plain type hierar-
chies are typically enriched by appropriateness conditions [5,6]. They regulate
which features are appropriate for FSs of a special type and restrict the values
of the appropriate features. A type hierarchy enriched by appropriateness con-
ditions is called a type signature. Fig. 3 (top) shows a small type signature. The
appropriateness condition ‘cat : np’ at type t3 means that the attribute cat is
appropriate for structures of type t3 and its value is restricted to structures of
type np or subtypes of np. Appropriateness conditions are inherited downwards.
Hence, the subtype t4 of t3 inherits the condition ‘cat : np’ from t3. It also
inherits the condition ‘head : t9’ from t3, but tightens it up to ‘head : t10’.

We can consider a type signature as a specification of a set of FSs, namely the
set of its totally well-typed FSs. We call a FS totally well-typed with respect to
a type signature if all its attributes are licensed by the type signature and their
values are at least as specific as demanded by the appropriateness conditions. Ad-
ditionally, all attributes which are prescribed by the appropriateness conditions

need to be present. For example,

�
��
cat : np

head :

�
agr :

�
pers : third
num : sing

�
t14

	
t11

�

�

t5

is totally

well-typed w.r.t. the type signature in Fig. 3 (top), but neither
�
pers : third
num : num

�
t14

nor
�
cat : np

�
t5

are.

FCAType is a system for the automatic induction of a type signature from a set
of untyped FSs. Generally, in the grammar engineering process, the type signa-
ture is constructed simultaneously with the rest of the grammar starting with a
small grammar covering only a few linguistic phenomena. However, FSs which
encode all the necessary phonological, morphological, syntactic, and semantic
information of a lexical entry are huge, and type signatures which cover general-
izations about such FSs become so complex that a purely manual construction
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and maintenance is intricate. Therefore, an induction of type signatures which
is at least semiautomatic would be most welcome.

The following three grammar engineering tasks are particularly supported
by our induction method: (1) corpus-driven grammar development, (2) reuse of
grammar resources, and (3) grammar maintenance: Today, we are in the lucky
position that we are provided with huge, corpus-extracted lexica. Usually, the
entries of these lexica can be seen as untyped FSs, but the manual hierarchical
organization of them is not feasible and must be automated. For economical
reasons, the reusability of grammatical resources is desirable [7] and should be
supported by automatic systems like FCAType. Transferring a grammar from one
formalism into another one may also unveil new theoretical insights, cf. [8,9]. Fi-
nally, [10] discusses how error and consistency checking of a large scale untyped
grammar can be facilitated by adding an appropriate type signature. However,
constructing an appropriate type signature for an already existing grammar is
usually a difficult task which requires deep insight into the structural design of
the grammar. Therefore, we propose that an expert should intellectually inves-
tigate the automatically induced type signature in order to detect errors and
inconsistencies in the given grammar which can be an easier task than to build
up an appropriate type signature from scratch by hand.

The key idea of our system for the induction of type signatures is to construct
the decomposition semilattice (DSL) from the untyped input FSs which can be
seen as a featureless type signature [6]. A similar method is used by Sporleder
[11] for a different task, namely for the automatic induction of lexical inheritance
hierarchies, i.e. hierarchies of untyped FSs: she reduces the task to a classification
problem where the search space is defined by a concept lattice.

2 FCAType Approach

Ouraim is to automatically induce anadequate type signature froma set ofuntyped
FSs. The type signature is adequate if it specifies the input data, i.e., if for each un-
typed input structure a totally well-typed, typed version exists (a typed version of
an untyped FS is identical to the untyped structure, except that types are assigned
to each restriction). Therefore, we need types for the input structures themselves
and for each restriction of them. Since it is required that the type signature ex-
presses generalizations, we also need types for all possible generalizations about
these structures. Moreover, we ask that the generalizations about restrictions of
the input structures can be naturally order embedded (via their typed versions)
into the ordered set of totally well-typed FSs of the induced type signature.

Further quality criteria for the induced type signatures are restrictiveness and
compactness. Improving the restrictiveness of an induced type signature means
reducing the set of totally well-typed FSs, and improving the compactness means
reducing the number of types in the type hierarchy.

FCAType is based on the construction of a DSL from a set of untyped FSs.
The DSL consists of (1) the FSs themselves, (2) their restrictions, and (3) all
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cat :
head :

cat : np

head : agr :
pers : third
num : plur

cat : np

head : agr :
pers : third
num : sing

cat : np

head : agr :
pers : third
num :

cat : vp

head :

form : finite

subj :
cat : np

head : agr :
pers : third
num : plur

cat : vp

head :

form : finite

subj :
cat : np

head : agr :
pers : third
num : sing

cat : vp

head :

form : finite

subj :
cat : np

head : agr :
pers : third
num :

agr :
pers : third
num : plur

agr :
pers : third
num : sing

agr :
pers : third
num :

pers : third
num : plur

pers : third
num : sing

pers : third
num :

form : finite

subj :
cat : np

head : agr :
pers : third
num : plur

form : finite

subj :
cat : np

head : agr :
pers : third
num : sing

form : finite

subj :
cat : np

head : agr :
pers : third
num :

[ ]

: third : finite : sing : plur : vp : np

Fig. 2. The decomposition semilattice for the structures of Fig. 1

generalizations about structures from (1) and (2). All those structures are par-
tially ordered by subsumption as in Fig. 2.2

By assigning a type to each element of the DSL one gains a type hierar-
chy which provides the required types. That a DSL can be straightforwardly
transformed into a well-formed, adequate type signature by inferring adequate
appropriateness conditions from the DSL can be seen by comparing the DSL in
Fig. 2 with the inferred type signature in Fig. 3 (top) (for details see [3]).3

However, the type signature in Fig. 3 (top) still has two undesirable properties:
First, the type signature is not very compact since some types are unnecessary
(the set of totally well-typed FSs would not change substantially if the types
t4,t5,t7,t8,t10,t11,t16, and t17 were deleted). Second, the induced appropriate-
ness conditions are not restrictive enough (e.g., the appropriateness condition
‘num:t1’ permits that the attribute num takes a complex FS of type t2 as value).
The first problem is solved by folding up the signature and the second one by
adding additional types to control the values:

We fold up a signature at a type t by deleting all proper subtypes of t under
the condition that this deletion does not affect the set of well-typed FSs of
our signature (up to typing). Hence, folding up a type signature results in a
more compact type signature (the terminology of folding is taken from [6]). In

2 Actually, instead of computing the set of all generalizations about restrictions of
the input structures and ordering them by subsumption, FCAType implements an
alternative approach: It generates the decomposition context of the input structures
and computes its concept lattice which is isomorphic to the DSL (except for the
bottom element). Its object set corresponds to the set of restrictions and its attribute
set encodes information about paths, path equations, and path values (for details see
[3]). This approach enables us on the one hand to use our FCA-submodule which is
used by other modules of FCALing, too. On the other hand, we found it useful to have
direct access to the decomposed properties of the input structures when it comes
to infer appropriateness conditions and to determine folding opportunities. Another
alternative would have been to use pattern concepts as described in [12].

3 If decomposition contexts are employed (see footnote 2), the required appropriate-
ness conditions can be immediately read off from the attribute concepts.
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t4
head : t10

t5
head : t11

t7
head : t16

t8
head : t17

t3
head : t9
cat : np

t6
head : t15
cat : vp

t2
head : t1
cat : t1

t10
agr : t13

t11
agr : t14

t9
agr : t12

t13
num : plur

t14
num : sing

t12
pers : third
num : t1

t16
subj : t4

t17
subj : t5

t15
subj : t3
form : finite

t1

third finite sing plur vp np

t3
head : t9
cat : np

t6
head : t15
cat : vp

t2
head : valhead

cat : valcat

t9
agr : t12

t15
subj : t2
form : finite

valhead t12
pers : third
num : valnum

�

third finite sing plur vp np

valpers valform valnum valcat

atomic

Fig. 3. Unfolded type signature (top) and maximally folded, value-controlled type
signature (bottom) for the structures of Fig. 1 (each box shows a type label in the first
line followed by the appropriateness conditions)

principle we have to consider two different folding opportunities. Atomic folding
opportunities result from the distribution of the atomic types in the FSs. All
folding opportunities of the type signature in Fig. 3 (top) are atomic. Structural
folding opportunities are rare and therefore not discussed here (for details see
[3]). In FCAType, we have chosen an easy way to take advantage of all atomic
folding opportunities. The key idea is that manually constructed type signatures
mainly encode information about the general structure of the lexical FSs. Hence,
we have chosen to simplify the input structures in a first step by replacing each
atomic value with a generic marker av . Starting from the DSL of these simplified
structures, we construct the corresponding type signature. It covers all structural
aspects of the untyped FSs, and it lays the foundation for our target signature. In
the next step, the atomic values are taken into account and the appropriateness
conditions are tightened up, wherever possible. Finally, all atomic values are
arranged under a type ‘atomic’ and meanwhile ordered by the features they can
be values of. In the resulting type signature, no atomic folding opportunities
are left, thanks to the preceding simplification of the input structure. The fact
that the rigorous simplification of the input structures can theoretically result in
type signatures which are too heavily folded up can be captured by additionally
induced feature co-occurrence restrictions [3,9].

The deficient restrictiveness of type signatures of DSLs is caused by appro-
priateness conditions which do restrict values of an attribute to structures of
the most common type. In such cases, the type signature has at least one re-
cursive type and thus the set of totally well-typed FSs is infinite [6]. Therefore,
we have decided to introduce an artificial type whenever such a situation would
occur and to adjust the affected appropriateness conditions. By inserting those
artificial types our type signatures become more restrictive.

Fig. 3 (bottom) shows the maximally folded, value-controlled type signature
induced by FCAType from the input data of Fig. 1. A detailed description of the
induction process is given in [3].
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3 Conclusion

It would be interesting to combine our approach with that of Sporleder and to
use our DSLs as input for her classification problem, since they encode much
more detail than her lattices, and they can be used as basis for the construction
of type signatures.

But also from a theoretical point of view, our observations are interesting:
The set of typed FSs corresponding to a type signature is well understood [5,6].
However, a lot of work has still to be done to answer the question which type sig-
nature models a set of untyped FSs best. In our opinion, a closer investigation of
DSLs and the related type signatures can provide answers. In [3] these questions
are discussed in greater detail: A number of alternative type signatures induced
from DSLs are presented and their properties are compared. Additionally, type
constraints are induced which either restrict the admissible path-equation rela-
tions or express feature co-occurrence restrictions.
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Ducassé, Mireille 226
Ducrou, Jon 1

Eklund, Peter 1
El Boussaidi, Ghizlane 269
Elloumi, Samir 170

Feno, Daniel R. 186
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